НАУЧНАЯ СЕССИЯ НИЯУ МИФИ-2010

НЕЙРОИНФОРМАТИКА-2010

ХІІ ВСЕРОССИЙСКАЯ НАУЧНО-ТЕХНИЧЕСКАЯ КОНФЕРЕНЦИЯ

ЛЕКЦИИ ПО НЕЙРОИНФОРМАТИКЕ По нейроинформатике и по то то то серт со ра «Совре с с с рок с ордант кт» УДК 001(06)+004.032.26(06) Нейронные сети ББК 72я5+32.818я5 M82

НАУЧНАЯ СЕССИЯ НИЯУ МИФИ-2010. XII ВСЕРОССИЙСКАЯ НАУЧНО-ТЕХНИЧЕСКАЯ КОНФЕРЕНЦИЯ «НЕЙРОЙНФОРМАТИКА-2010»: ЛЕК-ЦИИ ПО НЕЙРОИНФОРМАТИКЕ. – .: ↓ ↓ ↓ ↓ ↓ № , 20 0. – 3 28 с.

 $\begin{array}{c} \mathcal{A} = \mathcal{A} = \mathcal{A} \\ \mathcal$

BN 9 8-__ 262- 22_8 © Национальный, сс е от е ск. ядерный университёт «МИФИ», 2010

Содержание

струкции 24. Фе едие	
$\mathbf{p}_{\mathbf{p}} = \mathbf{e}_{\mathbf{p}} $	3
	4
$= \mathbf{P}_{\mathbf{x}} = \mathbf{P}_{\mathbf{x}} $	5
$C \circ_r \circ_r \circ_s \circ_s \circ_s \circ_s \circ_r \circ_r \circ_s \circ_r \circ_r \circ_s \circ_r \circ_s \circ_s \circ_r \circ_s \circ_s \circ_s \circ_s \circ_s \circ_s \circ_s \circ_s \circ_s \circ_s$	5
אין אר אין	4
2 w Base KOacopy K + KOC + eCK - e eCKO OB + KOC +	
есх, датеда	4
равелеахуст лески и одвелие уд 25	6
e po to ep_2 2 -2 - 0 cm / 2 - 2 p2 3 py 2	9
2 CC+ + A + O and of at 1 + and , CK, V + a - 2 - CP+2 OB, C+	
$c_r e_r$, $\kappa_s c_r py x_r$, k_r ,	4
32 K 10 10 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7
$A_{r} = ep_{r} = vp_{r}$	8

НЕЙРОИНТЕЛЛЕКТУАЛЬНЫЕ МАТЕРИАЛЫ, СИСТЕМЫ И КОНСТРУКЦИИ

Аннотация

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} pe \ c_{7} & \ e \ c_{3} & \ e \ c_{3} & \ e \ c_{4} & \ o \ c_{5} & \ e \ c_{7} &$

V. D. KOSHUR

nti te of pe ce and nfor at on see no ogy, i era n Federa Ani er i y, (n noyar, t ja E-mail: VKoshur@sfu-kras.ru

NEUROINTELLIGENT MATERIALS, SYSTEMS AND STRUCTURES

Abstract

9 e 2 ic concept 2 re pre ent ed ndering de é op ent of ne intégent 7 sterze, yté 2 nd contration. E 2 pe of 2 de pi en 2 sterze 2 nd ne 18 contro yté 2 re con idered 1 ilé 2 re ed forten for 2 tion of é 2 tic 2 nd 2 co tic de d, ppre ion of i et ion 2 nd noi e, 2 de pi e de ign of 2 rge day der pace re ed or. As odé of ne re co pter da gnotic i gget ed to in ped nondet r di é y 2 jor é e ent oftet nice yté d ringt eir op ention. Le co in contra e for intégent 2 sterze 2 nd yté i gi en 2 ing on po er 2 nd infor 2 tion é 2 nge resizetion 1 ilé i carried ot il 7 sterze carrier of 2 rio patze de front de re ofted nice.

Введение

 $\begin{aligned} & \Lambda_{C_{p}} Op_{p} \quad p_{2} \quad 3 \\ & B_{r_{p}} P_{p} \quad 4 \\ & O \quad E \quad A \\ & C_{r} Op_{r} \quad p_{2} \quad 3 \\ & B_{r_{p}} P_{r_{p}} P_{r_{p}} \\ & C_{r_{p}} C_{r_{p}} C_{r_{p}} C_{r_{p}} C_{r_{p}} C_{r_{p}} C_{r_{p}} \\ & C_{r_{p}} C_{r_{p}} C_{r_{p}} C_{r_{p}} C_{r_{p}} C_{r_{p}} C_{r_{p}} C_{r_{p}} \\ & C_{r_{p}} C_{r_{p}} C_{r_{p}} C_{r_{p}} C_{r_{p}} C_{r_{p}} C_{r_{p}} C_{r_{p}} \\ & C_{r_{p}} C_{r_{p}} C_{r_{p}} C_{r_{p}} C_{r_{p}} C_{r_{p}} C_{r_{p}} \\ & C_{r_{p}} C_{r_{p}} C_{r_{p}} C_{r_{p}} C_{r_{p}} C_{r_{p}} C_{r_{p}} C_{r_{p}} \\ & C_{r_{p}} C_{r_{p}} C_{r_{p}} C_{r_{p}} C_{r_{p}} C_{r_{p}} C_{r_{p}} C_{r_{p}} \\ & C_{r_{p}} C_$

Lepe o o_r xo ec_2 , p_{2+2} , s_2 p_{2} p_{2} x_3 p_{2} p_{2} p_{2} p_{3} p_{2} p_{2} p_{3} p_{3}

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} e & po_{44} & y \in c_{77}, x_{7} & e & p_{7}, x_{7} & e & p_{7}, x_{7} & e & p_{7} & p$

Примеры адаптивных материалов, систем и конструкций

Слоистые композиционные материалы

protection of the second of th $2 C_{rr} XOB + rr$. $p_r CO3 2 + r 2 3po XOC + 2CXO + e + Xr pr Be O X O + 2$ $<math>r C_{rr} YOr O, + O$ O ee $3 C_{rr} F 2 O + C O + 3OB + r 2 Xr 2 represource of the computation of the second state of the se$

pe \cdot OE 3KC, y_{2} , y_{2} , y_{3} , y_{4} , KO, KDe_{rr} , y_{4} , VO_{2} , y_{4} , VO_{2} , y_{4} , $\mathbf{E}_r = \mathbf{I}_A$ xo_{st}po epo**E**, $\mathbf{2}_{rs}$ x e c r c o solution e poissure cere p23 \mathbf{F}_{rs} so $\mathbf{2}$ p r r e x r y p \mathbf{F}_s so \mathbf{E}_s e r c o ce e pc e x r E s \mathbf{F}_s pr pe r 32 r r c'o po po eccos y priser 9-p prc. 7 , prc. 3 o s s se c e poceresoro y priser po

Рис. 1. Структура активного композиционного материала с пьезокерамической вставкой РZT, изолирующими слоями Iso и углепластиковыми слоями CFK

pr i e e e general e concerne de la concerne de la

Рис. 2. Схема включения нейросетевого блока управления (NN) с входными сигналами от трех сенсорных элементов с тремя выходными электрическими напряжениями для трех активных слоев пьезокерамики

(NN) $\cos_r \mathbf{k} \mathbf{e}_r \mathbf{c}_r \mathbf{k} \mathbf{y}_{\mathbf{e}_r}$ $\mathbf{k} \mathbf{k} \mathbf{e} = \mathbf{e}_{\mathbf{e}_r} \mathbf{e}_r \mathbf{k} \mathbf{k} \mathbf{e}_r \mathbf$ $\begin{array}{c} \mathbf{x}_{\mathbf{x}_{1}} \mathbf{y}_{\mathbf{x}_{2}} \mathbf{y}_{2}} \mathbf{y}_{\mathbf{x}_{2}} \mathbf{y}_{\mathbf{x}_{2$

$$J_1(\mathbf{W}) = ||v_s|| = \frac{1}{T} \left\{ \int_0^T (v_s)^2 dt \right\}^{1/2},\tag{1}$$

$$J_2(\mathbf{W}) = ||u_s - u_s^{opt}|| = \frac{1}{T} \left\{ \int_0^T (u_s - u_s^{opt})^2 dt \right\}^{1/2}.$$
 (2)

 $\begin{array}{c} 3 \ \mathrm{ec}_{\mathcal{S}} W - \hat{\mathrm{u}}_{\mathcal{S}_{\tau}} \mathrm{op} \ \mathrm{so}_{\mathcal{C}_{\tau}} \mathrm{pr}_{\mathcal{S}_{\tau}} \mathrm{$ 247

ISBN 978-5-7262-1225-8 ЛЕКЦИИ ПО НЕЙРОИНФОРМАТИКЕ

Рис. 3. Схема включения нейросетевого блока управления по типу автоматического регулирования с выходными сигналами в виде электрических напряжений для шести активных слоев пьезокерамики

Рис. 4. Изменение перемещений $u_s(t)$ (кривая 1) при динамическом деформировании композитной пластины в пассивном режиме и $u_s^*(t)$ (кривая 2) для найденного нейросетевого управления (горизонтальная ось — время t в микросекундах)

Рис. 5. Изменение скоростей $v_s(t)$ (кривая 1) при динамическом деформировании композитной пластины в пассивном режиме и $v_s^*(t)$ (кривая 2) для найденного нейросетевого управления (горизонтальная ось — время t в микросекундах)

РИС. 6. Графики заданного перемещения $u_s^{opt} = f(t, \omega^{opt})$ (кривая 1) для $\omega^{opt} = \omega/3$ и перемещения $u_s^{**}(t)$ (кривая 2) для найденного нейросетевого управления при J₂ → min (горизонтальная ось — время t в микросекундах)

upre and the point we are pose we are pose we are preased and are pose at the preased are pose reporo y pris ear y 2 oco ocy ecristry y ear eares Myry KO e sar

e e pocerero de pocerero

e cre i cre pe r s r r s erer cropocre epe e er $v_s(t)$ s ccr i ropo pe r s e op r pois r r cropocre $v_s^*(t)(xpr)$ pe prc. pe cre i eastro (xp,bg is 2) c cy ec, i.e., y, e.e. e.e. or prove at r cxopoc, $v_s^*(t)$ (xp, v_s^{oo} c, v_s^{oo}), v_s^{oo} e.e. v_s^{oo} , v_s^{oo}

$$\begin{split} & p_r c. 6 \quad o \otimes \mathfrak{F}_{\mathfrak{F}} \to \mathsf{cob} \quad e \quad e_{\mathfrak{F}_{\mathfrak{F}}} \to \mathsf{f}_{\mathfrak{F}} \quad \mathfrak{F}_{\mathfrak{F}} \quad \mathfrak{F}} \quad \mathfrak{F}_{\mathfrak{F}} \quad \mathfrak{F}_{\mathfrak{F}} \quad \mathfrak{F}_{\mathfrak{F}} \quad \mathfrak{F}_{\mathfrak{F}} \quad \mathfrak{F}_{\mathfrak{F}} \quad \mathfrak{F}} \quad \mathfrak{F}} \quad \mathfrak{F}_{\mathfrak{F}} \quad \mathfrak{F}} \quad \mathfrak{F}_{\mathfrak{F}} \quad \mathfrak{F}} \quad \mathfrak{F}_{\mathfrak{F}} \quad \mathfrak{F}} \quad \mathfrak{F}} \quad \mathfrak{F}} \quad \mathfrak{F}_{\mathfrak{F}} \quad \mathfrak{F}} \quad \mathfrak{F}} \quad \mathfrak{F}_{\mathfrak{F}} \quad \mathfrak{F}} \quad \mathfrak{F}} \quad \mathfrak{F}_{\mathfrak{F}} \quad \mathfrak{F} \quad \mathfrak{F}} \quad$$

Рис. 9. Распределение скоростей перемещений v(z,t) композитной пластины для найденного нейросетевого управления при $J_1 \rightarrow \min$

 $\begin{array}{c} \mathsf{cpe} \bullet & \mathsf{gc}_r \mathsf{o}_r \bullet & \mathsf{pg}_{\mathsf{A}_r} \mathsf{ep}_{\mathsf{f}} \mathsf{c}_{\mathsf{r}^{\mathsf{f}}} \mathsf{x}_{\mathsf{s}} \ u_s^{**}(t) \quad \mathsf{g}_{\mathsf{3}} \mathsf{x}_{\mathsf{s}} \ \mathsf{x}_{\mathsf{3}} \mathsf{g}_{\mathsf{3}} \mathsf{e}_{\mathsf{3}} \mathsf{e}_{\mathsf{3}} \mathsf{o}_{\mathsf{p}} \mathsf{y}_{\mathsf{3}} \mathsf{g}_{\mathsf{3}} \mathsf{e}_{\mathsf{3}} \mathsf{e}_{\mathsf{3}}$

Lo so pe critic right right rection power product y prime ear is expressed at the second sec

a no yoke se pro a e opprover ners source n'ecto 13, crranprise es a pro. 8, 9.

pe e e e compose o ro re e creating o creat

$$J_1^{\omega}(\mathbf{W}) = \frac{1}{1.5\omega T} \left\{ \iint_{\Omega \times [0,T]} (v_s)^2 dt \, d\omega \right\}^{1/2}.$$
 (3)

BO3 e $C_r B_r$ $\exists e^{\chi_r} p_r$ $e^{\chi_r} p_r$ $e^{\chi_r} p_r$ $d^{\chi_r} p_r$

 $\begin{array}{c} \mathbf{I}_{r}, y \in \operatorname{occ} \operatorname{occ}_{rr}, y = \mathbf{p}_{2} \mathbf{I}_{r}, \mathbf{r}_{r} = \mathbf{p}_{2} \mathbf{p}_{2} \mathbf{I}_{r}, \mathbf{p}_{r} = \mathbf{p}_{2} \mathbf{p}_{2} \mathbf{I}_{r}, \mathbf{p}_{r} = \mathbf{p}_{2} \mathbf{p}_{2} \mathbf{I}_{r}, \mathbf{p}_{r} = \mathbf{p}_{2} \mathbf{p}_{2} \mathbf{I}_{r} = \mathbf{I}_{r} =$

Активные композиционные панели и подавление вибраций [16,17]

b prc. 7 0.832 0 crem sector e op point are 2 to rare in the providence of the prov

Адаптивные конструкции космических телескопов и космических антенн [18,19]

 $\begin{array}{ccccccc} & \mu & \rho_{1} & \rho_{2} & \rho_{2} & \rho_{2} & \rho_{1} & \rho_{2} & \rho_{1} & \rho_{2} & \rho_{$

Рис. 10. Схема перехода от пассивных к активным и интеллектуальным конструкциям

Рис. 11. Подавление вибраций в космических аппаратах

Рис. 12. Деформирование панели с пьезоэлектрическими элементами

Управление акустическими полями и подавление шума

Рис. 13. Адаптивная конструкция космического телескопа

Рис. 14. Фрагмент несущей стержневой фермы телескопа с активными элементами

Рис. 15. Рефлектор космической антенны с активными элементами

Рис. 16. Слои активной космической антенны

Рис. 17. Технология изготовления рефлекторов космических антенн

E $0x_r \ge \varepsilon_r r_r \mathbf{E}_{0,r} \circ \mathbf{y} = \mathbf{p}_r \mathbf{E}_{0,r} + \varepsilon_r \circ \mathbf{z}$ $32 + r \mathbf{E}_{r} = 2 + ex_r \mathbf{p}_{0,r} + \varepsilon_r \circ \mathbf{z}$ $03\mathbf{E}_{0,r} = \mathbf{E}_{r,r} \circ \mathbf{y} = \mathbf{E}_{r,r} \circ \mathbf{E}_{r,r} \circ \mathbf{E}_{r,r} = \mathbf{E}_{r,r} \circ \mathbf{E}_{r,r} \circ \mathbf{E}_{r,r} \circ \mathbf{E}_{r,r} = \mathbf{E}_{r,r} \circ \mathbf{E}_{r,r} \circ$

Нейрокомпьютерная диагностика и неразрушающий контроль

Рис. 18. Подавление шума в салоне автомобиля

Рис. 19. Двумерная область D и зона контроля акустического давления S; E — пассивный акустический источник, F — активный акустический источник

Рис. 20. Распределение давления при действии пассивного акустического источника: (а) t=T/4, (б) t=T/2, (в) t=T

Рис. 21. Распределение давления при действии пассивного и двух активных источников: (а) t = T/4, (б) t = T/2, (в) t = T262 УДК 001(06)+004.032.26 (06) Нейронные сети

s prepriep, operkyrypress kopyc trappe Brzere re op s pr rzorobie ezrr Bze perc crcres pic pe e ezzes cezcopis prko se c 32 + C = 0, 0 = 32 = 0, $ce_{2}cop_{2} = 3 = e_{2} = 0B$. $ro = 2e_{1} = Bo_{3} = 0$ $ro_{r}o_{r}o_{r} = 2 = 3$ $y = 2e_{2} = 2e_{2$ rs, e i o c srpyske i pro coniencrity, re some o rs e e err ϕ p $e_{\phi\phi}$ o $e^{-\rho}$ o p_{ρ} p p_{ρ} o p_{ρ} o e_{ϕ} p p_{ρ} o p_{ρ} o ϕ_{ϕ} c p_{ρ} p χ_{ϕ} o ϕ_{ϕ} o ϕ_{ϕ} 3 e e e are, se proper e er e rog e ar pe dre se pe e ar e o a c a s 30 a BOS o soro pospy est. Loc e recrr pour st , o y sesso se posso cers 3 $e_{x_m} po_{4,40} pe_{8,73} + o_{42} p_{1,60} e_{4,6} e_{7,6} x xo_{4}c_{m}py x + o_{4,40} y 3 e_{8,6} e_{4,7} e_{$ 2 By chart of the boxon th 33 C e_r cuepr x_r , z_{re} op z_{rr} , $o y e_{zz}$ occe $e_r z_{rz}$, z_{re} po try tecky problego o borry op a trie o bay pease cocro ary tog

po r pye i je e e v vec vo crcre i vie e v

Классификационная таблица интеллектуальных материалов, систем и конструкций

Рис. 22. Схема сочетания трех факторов: Энергии, Информации, Материи (материальных носителей)

 $p_{r}c. ?? c e_{2rr} + 20 pe c_{r} B e_{20} B e_{3} p o e c_{r} B e_{7} 0 e c_{r} B e_{r} e p B e_{7} p e_{7$

УРОВНИ ⇒	СИСТЕМНЫЙ ИНТЕЛЛЕКТ							
ţ								
МАСШТАБ	0	1	2	3	4	5	6	7
E-0	L(0,0)							L(0,7)
E-1								
E-2								
E-3								
E-4								
E-5								
E-6								
E-7								
E-8								
E-9	L(9,0)							L(9,7)
(Å)								

Рис. 23. Классификационная таблица интеллектуальных материалов, систем и конструкций

 $\begin{array}{c} {}^{\circ} \operatorname{cc}_{\mathsf{h}} \circ_{\mathsf{r}} \operatorname{p}_{\mathsf{r}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}} \operatorname{e}_{\mathsf{r}} \operatorname{o}_{\mathsf{r}} \operatorname{p}_{\mathsf{r}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}} \overset{\circ}{\operatorname{p}}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}} \overset{\circ}{\operatorname{p}}_{\mathsf{r}}} \overset{\circ}{\operatorname{p}} \overset{\circ}{\operatorname{p}}} \overset{\circ}{\operatorname{p}$

- $L(0-2,0): e^{\frac{1}{2}} e^{\frac{1$

- L(3-4, 0-3): $0 \neq c_{rr} \neq z \neq coor i e_r c_r i y \neq re c_r p y_r y p \neq y, x or roll of reprint the product of the product of$
- L(4-6,2-4): y pr r crepc to popo tobbe norther to the contract of the contract
- $L(4-7,5-6): cpe = e_{q} ie = e_$

- ce ve r 3, pois ane r ceane ren on pe ear croren r eper We way you bacar + nero OB Opre nr 38 der.
- reopr & & rr & or o y pe & err ;
- reop, ', c.xycc, ie منه و po منه د c.xycc, ie c.ycc, ie ;

 $\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet$ re texpy to a porepro ou, crore r xo crpy x + , po c is 3 expression po po str pop str pop str pop str pop str pop str pop ro e çero opri pr 32 tr, is octobe xoropita e 3r.

Заключение

Ose se pe cro se cro se com C e yer on errors to c o ave ton excaves sorreste crcre vitor ropue co ep st o crcre vic ps 3 aver ps c as sor psreprs to a ocr

3,4, <u>sexre</u> ousser er or pe yorc pr poexr pour arr per var reper var reper var reper var royout - roy

pyrr & so was thank to be and so services the pe $\begin{array}{c} poex_{r}ob - py \\ r pobe r x \\ e y \\ e y$ to Abocube to the start by 3 to be a cut to be 3 to the ecite to the to the formed 3 eprove cra op 3 to a to transformer probleme and proposed and the state of the st ra opni troas o nea

pa.

В. Д. КОШУР

Cr y = 0.70, y

Литература

- . Исии Т., Симояма И., Иноуэ Х., Хиросе М., Накадзима Н. е _{д т}ро_{фт №} : Цер. с ₁0_ф. – .: ₁ р, 988. – 3 8 с.
- 2. Linkens D. A., Nyongesal H. O. Les ming yte in it & jgent control: an apprais of f zzy, ne response of gords of control in the process of the proces of the process of the process o
- 3. Noor \mathbf{M} . K., Jorgensen C. C. Al and of of of co pting Aerospace America. 996, $\mathbf{0}$. $\mathbf{34}$, No. 9, pp. $\mathbf{34}$ - $\mathbf{39}$. yc. epero: $\mathbf{1}$ with $\mathbf{1}$ are $\mathbf{1}$ with $\mathbf{1}$ are $\mathbf{1}$. And $\mathbf{1}$ are $\mathbf{1}$ a
- 4. Кошур В. Д. Фринс уте жаре те до огни за осдове утя вринс сези Вычислительные технологии, о 0, Сезия жаруск, 700_с. 8-83.
- Кошур В. Д., Немировский Ю. В. Зодати уз начен и схредане о ен на н ссхоло е оругровани э е еднов ходструкан – новост прох: рузе. Ст прохое от е едне, 990. – 98 с.
- 6. Болотин В. В., Новичков Ю. Н. езак 2 рабогос о струкак. .: 2 гостроедие, 980. - 3 <u>с</u>.
- . Алфутов Н. А., Зиновьев П. А., Попов В. Г. 2 С ст. осторование, 984. 264 с.
- 8. Кравчук А. С., Майборода В. П., Уржумцев Ю. С. езако от ерана ко 03r 4r 0442 - 2 repro 02: Кс ерг еза узако и че сало рего 2- .: уд уло, 98_-304 с.
- 9. Кошур В.Д. о е рощ не ро ессов у рав ент трас ор з не у ругт во навс огстра его охера и еска ко озгата, кон е на за раз з ек продата за среда ов. Доклады Академии наук, н. 998, го 363, -22, с. 8 – 83. ре ставена з к. Ю.И.Шокиным.

- 0. Koshur V.D. Adje and pa je ne pa ne of contro of 4 of a e tran for ation in a insted of cera ic co poite: Concept of the Mathi E ed ronic Materia (MEM) Mode ing and Contro of Adaptie trad re Ed. y U. Gabbert, Fother. Ber. D. ich e, Nr. 268, D. Edorf, D. efag 998, pp. 36 - 366.
- . Kowyp B. \mathcal{A} . Ipr every set of \mathcal{A} product of \mathcal{A} prod
- 2. Kouyp B. \mathcal{A} . **L**poex_r, pois are r xo serve poie or e pois are reare ex rys rys \mathcal{A}_{r} pr \mathcal{A}_{r} pr \mathcal{A}_{r} pr \mathcal{A}_{r} or \mathcal{A}_{r} pr \mathcal{A}_{r}
- 3. Koshur V.D. j stion of jet co potej steris of tetype of MEM y ing ne rond of contro. Proceeding of te A Proceeding of te AM y poij jet tr d re and tr dronic yte, Magde rg, er any, 26-29 ente er 2000 Ed. y U. Gabbert and H.S. Tzou, er Acade ic P it er, Boton London, 200. - pp. 23 - 238.
- 4. Kouyp B. \mathcal{A} . So serve so e poir a e rare e $e_{x_{T}}y_{2}$ as to $e_{T}y_{2}$ as the point of $e_{T}y_{2}$ and $e_{T}y_{2}$ as the point of $e_{T}y_{2}$ and $e_{T}y_{2$
- Koshur V. D. Mode ing of a insted to cen ic co pote in ne ront of contro of eatic a ethen for stion Neural Network World, sternstions o rue on Non tandard Co ptingand Atin constended, of . 2, No. 4, 2002, pp. 349-360.
- 6. Hanselka H. Exizition of jet tr d re y ing h er co poite jet erid Proceeding of the econd cientific Conference jet Meetenics yte – Adaptronic, injerity of Magde rg, 8-9 Mare 199, P jt ed y injerity of Magde rg, 99, pp. - 0.
- . Gabber U. Modeing and A to atic Deign of Piezoe etric Contro ed z at tr d re. AM y point on z at tr d re and tr dronic yte. toric Progra . 2 etre er, 2000. In er ty of Magde rg, er any, 2000. – ______PP.
- 8. Dongi F. Adapti e tr d re in ig preci ion at e Modelling and Control of Adaptive Mechanical Structures. Nr. 268, D e dorf: D er g g 998, pp. 429-438.

ISBN 978-5-7262-1225-8 ЛЕКЦИИ ПО НЕЙРОИНФОРМАТИКЕ

- 9. Melz T., Flovel M., Krajenski V., Antonia de la Torre M., Hanselka H., Moria Pintado J. 3 21 211 enno re ed or 2 2 n 12 d red in 5 2 ent indingt et no by Modelling and Control of Adaptive Mechanical Structures. Nr. 268, D e dorf: D ef 2 g 998, pp. 449-4 8
- Кошур В. Д., Фадеева М. С. сстрани звукового звест о 2 репетрания з кото стический журнал, 200.
 Кошур В. Д., Фадеева М. С. сстрани звукового звест о 2 репетрания стический журнал, 200.
 Стический журнал, 200.
 Спический журнал, 200.
- ??. ve ₄o, e ₄o, o, r, · . URL: http://www.nanometer.ru
- 24. Головин Ю. И. Фие езне и зд зоге зн ху. : д нзостроезне, 200.
- ? $\Pi y_{\pi} \Psi$, $O y_{3} H c \Phi$. $\Phi \Rightarrow 0_{\pi} e \Rightarrow 0_{\pi} e_{\pi} : e_{\pi} o c e p_{\theta}$, 2008.

Владимир Дмитриевич КОШУР, $o_{x_r}o_p \to 3r$ хо $g_re_{x_r} + g_c x_r \to g_r x_r$, $p_c = x_r + y_r +$