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НОВЫЙ SVM-АЛГОРИТМ ДЛЯ СВЕРХБОЛЬШИХ НАБОРОВ
ДАННЫХ
Аннотация

В лекции рассматривается новейший алгоритм обучения для машин опор-
ных векторов (SVM), известных также под наименованием «машины ядер-
ных функций» (kernel machines), при работе со сверхбольшими наборами
данных (например, содержащими несколько миллионов обучающих пар).
Вначале сравниваются нейронные сети и машины опорных векторов с точ-
ки зрения решения с их помощью задач классификации (распознавания
образов) и регрессии (аппроксимации функций), после чего вводится ал-
горитм обучения для машин опорных векторов (SVM-алгоритм). Показано,
что выбор значений весов в SVM-алгоритме приводит к задаче квадратич-
ного программирования с ограничениями. В отличие от классических задач
квадратичного программирования, матрицы Гессе, с которыми приходится
иметь дело при реализации SVM-алгоритмов, обычно очень плотно запол-
нены ненулевыми элементами. Кроме, того размерность для таких матриц
меняется с изменением числа обучающих пар данных. Это приводит к появ-
лению матриц Гессе сверхбольших размерностей, что затрудняет решение
задачи обучения. Для решения такого рода сверхбольших задач предлагается
новый итерационный алгоритм, получивший наименование ISDA (Iterative
Single Data Algorithm), основывающийся на последовательном использова-
нии обучающих пар данных из имеющегося обучающего набора. Дается
доказательство сходимости этого алгоритма, которое базируется на сходи-
мости итеративного метода Гаусса–Зейделя для решения систем линейных
уравнений. Приводятся результаты проверки работоспособности предлагае-
мого алгоритма на тестовых наборах данных. Алгоритм ISDA показал себя
наиболее быстрым среди существующих в настоящее время при точном
решении задач классификации и регрессии для сверхбольших наборов обу-
чающих данных.
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NEW SUPPORT VECTOR MACHINES ALGORITHM
FOR HUGE DATA SETS

Abstract

The seminar presents the newest learning algorithm for support vector machines
(SVMs), a.k.a., kernel machines, when faced with huge data sets (say, millions
of training data pairs). It starts with comparisons between the so-called neural
networks (NNs) and SVMs for solving classification (pattern recognition) and re-
gression (function approximation) tasks and then it introduces the SVMs learning
algorithm. It shows how comes that learning the SVMs’ weights means solving
the quadratic programming (QP) problem with constraints. Unlike in classic QP
problems, Hessian matrices involved in SVMs are usually extremely dense. In
addition, their sizes scale with the number of training data pairs. This leads
to huge Hessian matrices, and to intractable solutions. The new iterative single
data algorithm (ISDA) is proposed for solving such huge problems. The proof of
its convergence, based on the convergence of Gauss-Seidel iterative method for
solving linear systems of equations, is given. Some comparisons on benchmark
data sets are presented. ISDA implementation seems to be the quickest software
for exact solving classification and regression tasks from huge training data sets
problems at the moment.

Introduction

Today, we are surrounded by an ocean of all kind of experimental data (i. e., ex-
amples, samples, measurements, records, patterns, pictures, tunes, observations
etc) produced by various sensors, cameras, microphones, pieces of software
and/or other human made devices. The amount of data produced is enormous
and ever increasing. The first obvious consequence of such a fact is — humans
can’t handle such massive quantity of data which are usually appearing in the
numeric shape as the huge (rectangular or square) matrices. Typically, the num-
ber of their rows tells about the number of data pairs collected, and the number
of columns represents the dimensionality of data. Thus, faced with the Giga-
and Terabyte sized data files one has to develop new approaches, algorithms
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and procedures. Few techniques for coping with huge data size problems are
presented here. This explains the appearance of a wording “huge data sets” in
the title of the seminar.

The direct consequence is that (instead of attempting to dive into the sea of
hundreds of thousands or millions of high-dimensional data pairs) we have to
develop other “machines” i. e., “devices” for analyzing, recognition in, and/or
learning from, such huge data sets. The so-called “learning machine” is pre-
dominantly a piece of software that implements both the learning algorithm and
the function (network, model) which parameters has to be determined by the
learning part of the software. Next, it is worth of clarifying the fact that many
authors tend to label similar (or even same) models, approaches and algorithms
by different names. One is just destine to cope with concepts of data mining,
knowledge discovery, neural networks, Bayesian networks, machine learning,
pattern recognition, classification, regression, statistical learning, decision trees,
decision making etc. All of them usually have a lot in common, and often they
use same sets of techniques for adjusting, tuning, training or learning the pa-
rameters defining the models. The common object for all of them is a training
data set. All the various approaches mentioned start with a set of data pairs
(xi, yi) where xi represents the input variables (causes, observations, records)
and yi denote the measured outputs (responses, labels).

This is a seminar on (machine) learning from empirical data by applying
support vector machines (SVMs). We first show some similarities and dif-
ferences between the SVMs and NNs and then we introduce the QP based
learning for SVMs. The SVMs fall into the big group of supervised learning
algorithms. This means that for each input vector (measurements) xi there is
always a known output value (label) yi. Here, we do not present neither the
semi-supervised learning algorithms (when only smaller part of inputs have cor-
responding labeled outputs), nor unsupervised methods (such as PCA or ICA,
when there are no labeled desired outputs at all). The basic aim of this chap-
ter is to give, as far as possible, a condensed (but systematic) presentation of a
novel learning paradigm embodied in SVMs. Our focus will be on the construc-

tive part of the SVMs’ learning algorithms for both the classification (pattern
recognition) and regression (function approximation) problems. Consequently,
we will not go into all the subtleties and details of the statistical learning the-
ory (SLT) and structural risk minimization (SRM) which are the theoretical
foundations for learning algorithms presented below. The approach here seems
more appropriate for the application oriented readers. The theoretically minded
and interested reader may find an extensive presentation of both the SLT and
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SRM in (Vapnik and Chervonenkis, 1989; Vapnik, 1995, 1998; Cherkassky and
Mulier, 1998; Cristianini and Shawe-Taylor, 2001; Kecman, 2001; Schölkopf
and Smola 2002). Instead of diving into such statistically colored theory, a
quadratic programming based learning (leading to parsimonious SVMs) will be
presented in a gentle way — starting with linear separable problems, through the
classification tasks having overlapped classes but still a linear separation bound-
ary, beyond the linearity assumptions to the nonlinear separation boundary, and
finally to the linear and nonlinear regression problems. Here, the adjective “par-
simonious” denotes a SVM with a small number of support vectors (“hidden
layer neurons”). The scarcity of the model results from a sophisticated, QP
based, learning that matches the model capacity to data complexity ensuring a
good generalization, i. e., a good performance of SVM on the future, previously,
during the training unseen, data.

Same as the neural networks (or similarly to them), SVMs possess the well-
known ability of being universal approximators of any multivariate function to
any desired degree of accuracy. Consequently, they are of particular interest for
modeling the unknown, or partially known, highly nonlinear, complex systems,
plants or processes. Also, at the very beginning, and just to be sure what the
whole chapter is about, we should state clearly when there is no need for an
application of SVMs’ model-building techniques.

In short, whenever there exists an analytical closed-form model or, there
is a knowledge making it possible to devise one, there is no need to resort to
the learning from empirical data by SVMs (or by any other type of a learning
machine).

Basics of learning from data by NNs and SVMs

SVMs have been developed in the reverse order to the development of neural
networks. SVMs evolved from the sound theory to the implementation and
experiments, while the NNs followed more heuristic path, from applications
and extensive experimentation to the theory. It is interesting to note that the
very strong theoretical background of SVMs did not make them widely ap-
preciated at the beginning. The publication of the first papers by Vapnik and
Chervonenkis (Vapnik and Chervonenkis, 1964, 1968) went largely unnoticed
till 1992. This was due to a widespread belief in the statistical and/or machine
learning community that, despite being theoretically appealing, SVMs are nei-
ther suitable nor relevant for practical applications. They were taken seriously
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only when excellent results on practical learning benchmarks were achieved (in
numeral recognition, computer vision and text categorization). Today, SVMs
show better results than (or comparable outcomes to) NNs and other statistical
models, on the most popular benchmark problems.

The learning problem setting for SVMs is as follows: there is some un-
known nonlinear dependency (mapping, function) y = f(x) between some
high-dimensional input vector x and the scalar output y (or the vector out-
put y as in the case of multiclass SVMs). There is no information about
the underlying joint probability functions here. Thus, one must perform a
distribution-free learning. The only information available is a training data
set D = {(xi, yi) ∈ X × Y }, i = 1, . . . , l, where l stands for the number of
the training data pairs and is therefore equal to the size of the training data set
D. Often, yi is denoted as di (i.e., ti), where d(t) stands for a desired (target)
value. Hence, SVMs belong to the supervised learning techniques.

Note that this problem is similar to the classic statistical inference. How-
ever, there are several very important differences between the approaches and
assumptions in training SVMs and the ones in classic statistics and/or NNs mod-
eling. Classic statistical inference is based on the following three fundamental
assumptions:

1. Data can be modeled by a set of linear in parameter functions; this is a
foundation of a parametric paradigm in learning from experimental data.

2. In the most of real-life problems, a stochastic component of data is the
normal probability distribution law, that is, the underlying joint probabil-
ity distribution is a Gaussian distribution.

3. Because of the second assumption, the induction paradigm for parame-
ter estimation is the maximum likelihood method, which is reduced to
the minimization of the sum-of-errors-squares cost function in most engi-
neering applications.

All three assumptions on which the classic statistical paradigm relied turned
out to be inappropriate for many contemporary real-life problems (Vapnik,
1998) because of the following facts:

1. Modern problems are high-dimensional, and if the underlying mapping
is not very smooth the linear paradigm needs an exponentially increasing
number of terms with an increasing dimensionality of the input space X
(an increasing number of independent variables). This is known as “the
curse of dimensionality”.
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2. The underlying real-life data generation laws may typically be very far
from the normal distribution and a model-builder must consider this dif-
ference in order to construct an effective learning algorithm.

3. From the first two points it follows that the maximum likelihood estima-
tor (and consequently the sum-of-error-squares cost function) should be
replaced by a new induction paradigm that is uniformly better, in order to
model non-Gaussian distributions.

In addition to the three basic objectives above, the novel SVMs’ problem
setting and inductive principle have been developed for standard contemporary
data sets which are typically high-dimensional and sparse (meaning, the data
sets contain small number of the training data pairs).

SVMs are the so-called “nonparametric” models. “Nonparametric” does not
mean that the SVMs’ models do not have parameters at all. On the contrary,
their “learning” (selection, identification, estimation, training or tuning) is the
crucial issue here. However, unlike in classic statistical inference, the parame-
ters are not predefined and their number depends on the training data used. In
other words, parameters that define the capacity of the model are data-driven
in such a way as to match the model capacity to data complexity. This is a
basic paradigm of the structural risk minimization (SRM) introduced by Vapnik
and Chervonenkis and their coworkers that led to the new learning algorithm.
Namely, there are two basic constructive approaches possible in designing a
model that will have a good generalization property:

1. Choose an appropriate structure of the model (order of polynomials, num-
ber of HL neurons, number of rules in the fuzzy logic model) and, keep-
ing the estimation error (a.k.a. confidence interval, a.k.a. variance of the
model) fixed in this way, minimize the training error (i.e., empirical risk),
or

2. Keep the value of the training error (a.k.a. an approximation error, a.k.a.
an empirical risk) fixed (equal to zero or equal to some acceptable level),
and minimize the confidence interval.

Classic NNs implement the first approach (or some of its sophisticated vari-
ants) and SVMs implement the second strategy. In both cases the resulting
model should resolve the trade-off between under-fitting and over-fitting the
training data. The final model structure (its order) should ideally match the

learning machines capacity with training data complexity. This important dif-
ference in two learning approaches comes from the minimization of different
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cost (error, loss) functionals. Table 1 tabulates the basic risk functionals applied
in developing the three contemporary statistical models.

Table 1. Basic Models and Their Error (Risk) Functionals

Multilayer perceptron 

(NN)

Regularization Network 

(Radial Basis Functions Network) 
Support Vector Machine 

2

1

( ( , )
l

i i

i
Closeness to data

R d f x w ) |
2 2

1

( ( , )) || |
l

i i

i
SmoothnessCloseness to data

R d f fx w P
1

( , )
l

i Closeness Capacity of
to data a machine

R L l

             Closeness to data = training error, a.k.a. empirical risk 

h

In Table 1, di stands for desired values, w is the weight vector subject to
training, λ is a regularization parameter, P is a smoothness operator, Lε is a
SVMs’ loss function, h is a VC dimension and Ω is a function bounding the
capacity of the learning machine. In classification problems Lε is typically
0–1 loss function, and in regression problems Lε is the so-called Vapnik’s ε-
insensitivity loss (error) function (see more about it in the section “Regression
by Support Vector Machines” )

Lε = |y − f(x,w)|ε =











0, if |y − f(x,w)| 6 ε,

|y − f(x,w)| − ε, otherwise,

(1)

where ε is a radius of a “tube” within which the regression function must
lie after the successful learning. (Note that for ε = 0, the interpolation of
training data will be performed). It is interesting to note that (Girosi, 1997) has
shown that under some constraints the SV machine can also be derived from
the framework of regularization theory rather than SLT and SRM. Thus, unlike

the classic adaptation algorithms present in NNs (that work in the L2 norm)

SV machines represent novel learning techniques which perform SRM. In this
way, the SV machine creates a model with minimized VC dimension and when
the VC dimension of the model is low, the expected probability of error is low
as well. This means; it’s very likely that they will have good performance on
previously unseen data, i.e. a good generalization. This property is of particular
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interest because the model that generalizes well is a good model and not the
model that performs well on training data pairs. Very good performance on
training data usually leads to an extremely undesirable overfitting.

As it will be shown below, in the “simplest” pattern recognition tasks, sup-
port vector machines use a linear separating hyperplane to create a classifier

with a maximal margin. In order to do that, the learning problem for the SV
machine will be cast as a constrained nonlinear optimization problem. In this
setting the cost function will be quadratic and the constraints linear (i.e., one
will have to solve a classic quadratic programming problem).

In cases when given classes cannot be linearly separated in the original input
space, the SV machine first (non-linearly) transforms the original input space
into a higher dimensional feature space. This transformation can be achieved by
using various nonlinear mappings; polynomial, sigmoid as in multilayer percep-
trons, RBF mappings having as the basis functions radially symmetric functions
such as Gaussians, or multiquadrics or different spline functions. After this non-
linear transformation step, the task of a SV machine in finding the linear optimal
separating hyperplane in this feature space is “relatively trivial”. Namely, the
optimization problem to solve in a feature space will be of the same kind as
the calculation of a maximal margin separating hyperplane in an original input
space for linearly separable classes. How, after the specific nonlinear trans-
formation, nonlinearly separable problems in input space can become linearly
separable problems in a feature space will be shown later.

In a probabilistic setting, there are three basic components in all supervised
learning from data tasks: a generator of random inputs x, a system whose
training responses y (i.e., d) are used for training the learning machine, and a
learning machine which, by using inputs xi and system’s responses yi, should
learn (estimate, model) the unknown dependency between these two sets of
variables (namely, xi and yi) defined by the weight vector w(Fig. 1).

The figure shows the most common learning setting that some readers may
have already seen in various other fields — notably in statistics, NNs, control
system identification and/or in signal processing. During the (successful) train-
ing phase a learning machine should be able to find the relationship between an
input space X and an output space Y , by using data D in regression tasks (or to
find a function that separates data within the input space, in classification ones).
The result of a learning process is an “approximating function” fa(x,w), which
in statistical literature is also known as, a hypothesis fa(x,w). This function
approximates the underlying (or true) dependency between the input and output
in the case of regression, and the decision boundary, i.e., separation function,
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Figure 1 A model of a learning machine (top) w = w(x, y) that during the training phase (by observ-

This connection is present only 
during the learning phase. 

System

i.e., Plant 

w

y i.e., d 

The learning (training) phase

ox

The application (generalization or, test) phase

Learning Machine

w = w(x, y)

Learning Machine 

o = fa(x, w) ~ y 

Figure 1. A model of a learning machine (top) w = w(x, y) that during
the training phase (by observing inputs xi to, and outputs yi from, the
system) estimates (learns, adjusts, trains, tunes) its parameters (weights)
w, and in this way learns mapping y = f(x,w) performed by the system.
The use of fa(x,w) ∼ y denotes that we will rarely try to interpolate

training data pairs. We would rather seek an approximating function that
can generalize well. After the training, at the generalization or test phase,
the output from a machine o = fa(x,w) is expected to be “a good” estimate
of a system’s true response y.

in a classification. The chosen hypothesis fa(x,w) belongs to a hypothesis

space of functions H(fa ∈ H), and it is a function that minimizes some risk

functional R(w).
It may be practical to remind the reader that under the general name “ap-

proximating function” we understand any mathematical structure that maps in-
puts x into outputs y. Hence, an “approximating function” may be: a multilayer
perceptron NN, RBF network, SV machine, fuzzy model, Fourier truncated se-
ries or polynomial approximating function. Here we discuss SVMs. A set of
parameters w is the very subject of learning and generally these parameters are
called weights. These parameters may have different geometrical and/or phys-
ical meanings. Depending upon the hypothesis space of functions H we are
working with the parameters w are usually:
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• the hidden and the output layer weights in multilayer perceptrons;
• the rules and the parameters (for the positions and shapes) of fuzzy sub-

sets;
• the coefficients of a polynomial or Fourier series;
• the centers and (co)variances of Gaussian basis functions as well as the

output layer weights of this RBF network;
• the support vector weights in SVMs.

There is another important class of functions in learning from examples
tasks. A learning machine tries to capture an unknown target function fo(x)
that is believed to belong to some target space T , or to a class T , that is
also called a concept class. Note that we rarely know the target space T and
that our learning machine generally does not belong to the same class of func-
tions as an unknown target function fo(x). Typical examples of target spaces
are continuous functions with s continuous derivatives in n variables; Sobolev
spaces (comprising square integrable functions in n variables with s square in-
tegrable derivatives), band-limited functions, functions with integrable Fourier
transforms, Boolean functions, etc. In the following, we will assume that the
target space T is a space of differentiable functions. The basic problem we
are facing stems from the fact that we know very little about the possible un-
derlying function between the input and the output variables. All we have at
our disposal is a training data set of labeled examples drawn by independently
sampling a(X × Y ) space according to some unknown probability distribution.

Now, we stop with general issues and concepts and we present the learning
algorithms for SVMs, or we show how, from a training data, they can learn the
unknown dependency.

Support Vector Machines in Classification and Regression

Below, we focus on the algorithm for implementing the SRM induction principle
on the given set of functions. It implements the strategy mentioned previously
— it keeps the training error fixed and minimizes the confidence interval. We
first consider a “simple” example of linear decision rules (i.e., the separating
functions will be hyperplanes) for binary classification (dichotomization) of lin-
early separable data. In such a problem, we are able to perfectly classify data
pairs, meaning that an empirical risk can be set to zero. It is the easiest classi-
fication problem and yet an excellent introduction of all relevant and important
ideas underlying the SLT, SRM and SVM.
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Our presentation will gradually increase in complexity. It will begin with a
Linear Maximal Margin Classifier for Linearly Separable Data where there is
no sample overlapping. Afterwards, we will allow some degree of overlapping
of training data pairs. However, we will still try to separate classes by using
linear hyperplanes. This will lead to the Linear Soft Margin Classifier for Over-

lapping Classes. In problems when linear decision hyperplanes are no longer
feasible, the mapping of an input space into the so-called feature space (that
“corresponds” to the HL in NN models) will take place resulting in the Non-

linear Classifier. Finally, in the subsection on Regression by SV Machines we
introduce same approaches and techniques for solving regression (i.e., function
approximation) problems.

Linear Maximal Margin Classifier for Linearly Separable Data

Consider the problem of binary classification or dichotomization. Training data
are given as

(x1, y1), (x2, y2), . . . , (xl, yl), x ∈ ℜn, y ∈ {+1,−1}. (2)

For reasons of visualization only, we will consider the case of a two-
dimensional input space, i.e., x ∈ ℜ2. Data are linearly separable and there
are many different hyperplanes that can perform separation (Fig. 2)1. How to
find “the best” one? The difficult part is that all we have at our disposal are
sparse training data. There are many functions that can solve given pattern
recognition (or functional approximation) tasks. In such a problem setting, the
SLT (developed in the 1960s by Vapnik and Chervonenkis) shows that it is
crucial to restrict the class of functions implemented by a learning machine to
one with a complexity that is suitable for the amount of available training data.

In the case of a classification of linearly separable data, this idea is trans-
formed into the following approach — among all the hyperplanes that minimize
the training error (i.e., empirical risk) find the one with the largest margin. This
is an intuitively acceptable approach. Just by looking at Fig. 2 we will find that
the dashed separation line shown in the right graph seems to promise prob-

ably good classification while facing previously unseen data (meaning, in the
generalization, i.e. test, phase). Or, at least, it seems to probably be better in

1Actually, for x ∈ ℜ2, the separation is performed by “planes” w1x1 + w2x2 + b = o. In
other words, the decision boundary, i.e., the separation line in input space is defined by the
equation w1x1 + w2x2 + b = 0.
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generalization than the dashed decision boundary having smaller margin shown
in the left graph. This can also be expressed as that a classifier with smaller
margin will have higher expected risk.

By using given training examples, during the learning stage, our machine
finds parameters w = [w1, w2, . . . , wn]T and b of a discriminant or decision
function d(x,w, b) given as

d(x,w, b) = wT x + b =

n
∑

i=1

wixi + b, (3)

where x,w ∈ ℜn, and the scalar b is called a bias 2. After the successful train-
ing stage, by using the weights obtained, the learning machine, given previously
unseen pattern xp, produces output o according to an indicator function given
as

iF = o = sign(d(xp,w, b)), (4)

where o is the standard notation for the output from the learning machine. In
other words, the decision rule is:

if d(xp,w, b) > 0, the pattern xp belongs to a class 1 (i.e., o = y1 = +1),
and

if d(xp,w, b) < 0 the pattern xp belongs to a class 2 (i.e., o = y2 = −1).

The indicator function iF given by (4) is a step-wise (i.e., a stairs-wise) function
(see Figs 3 and 4). At the same time, the decision (or discriminant) function
d(xp,w, b) is a hyperplane. Note also that both a decision hyperplane d and
the indicator function iF live in an n + 1-dimensional space or they lie “over”
a training pattern’s n-dimensional input space. There is one more mathemati-
cal object in classification problems called a separation boundary that lives in
the same n-dimensional space of input vectors x. Separation boundary sepa-
rates vectors x into two classes. Here, in cases of linearly separable data, the
boundary is also a (separating) hyperplane but of a lower order than d(xp,w, b).

The decision (separation) boundary is an intersection of a decision function

d(x,w, b) and a space of input features. It is given by

d(x,w, b) = 0. (5)

All these functions and relationships can be followed, for two-dimensional in-
puts x, in Fig. 6. In this particular case, the decision boundary i.e., separating

2Note that the dashed separation lines in Fig. 2 represent the line that follows from
d(x, w, b) = 0.
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Separation line, i.e., 

decision boundary  

Class 1

Class 2

Smallest

margin

M

x1

x2

Class 2

Class 1

Largest

margin M

x2

x1

Figure 2. Two-out-of-many separating lines: a good one with a large
margin (right) and a less acceptable separating line with a small margin,
(left).

(hyper)plane is actually a separating line in a x1 − x2 plane and, a decision
function d(x,w, b) is a plane over the 2-dimensional space of features, i.e.,
over a x1 − x2 plane.

In the case of 1-dimensional training patterns x (i.e., for 1-dimensional in-
puts x to the learning machine), decision function d(x,w, b) is a straight line in
an x − y plane. An intersection of this line with an x-axis defines a point that
is a separation boundary between two classes. This can be followed in Fig. 4.
Before attempting to find an optimal separating hyperplane having the largest
margin, we introduce the concept of the canonical hyperplane. We depict this
concept with the help of the 1-dimensional example shown in Fig. 4. Not quite
incidentally, the decision plane d(x,w, b) shown in Fig. 6 is also a canonical

plane. Namely, the values of d and of iF are the same and both are equal to
|1| for the support vectors depicted by stars. At the same time, for all other
training patterns |d| > |iF |. In order to present a notion of this new concept
of the canonical plane, first note that there are many hyperplanes that can cor-
rectly separate data. In Fig. 4 three different decision functions d(x,w, b) are
shown. There are infinitely many more. In fact, given d(x,w, b), all functions
d(x, kw, kb), where k is a positive scalar, are correct decision functions too.
Because parameters (w, b) describe the same separation hyperplane as parame-
ters (kw, kb) there is a need to introduce the notion of a canonical hyperplane.
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A hyperplane is in the canonical form with respect to training data x ∈ X
if

min
xi∈X

|wTxi + b | = 1. (6)

The solid line d(x,w, b) = −2x+5 in Fig. 4 fulfills (6) because its minimal

absolute value for the given six training patterns belonging to two classes is 1.
It achieves this value for two patterns, chosen as support vectors, namely for
x3 = 2, and x4 = 3. For all other patterns, |d| > 1.

Support vectors

are star data 

Input x2

Input x1

The separation boundary is

an intersection of d(x, w, b)

with the input plane (x1, x2).

Thus it is:  wTx + b = 0 

The decision function (optimal canonical 

perplane) d(x, w, b) is an 

Desired value y     Indicator function 

    iF(x, w, b) = sign(d)

+1

separating hy

argument of the indicator function. 

0

-1

d(x, w, b)

Input plane

(x1, x2)

Input plane

(x1, x2)

Margin M

Figure 3. The definition of a decision (discriminant) function or hyper-
plane d(x,w, b), a decision (separating) boundary d(x,w, b) = 0 and an
indicator function iF = sign(d(xp,w, b)) which value represents a learning,
or SV, machine’s output o.

Note an interesting detail regarding the notion of a canonical hyperplane that
is easily checked. There are many different hyperplanes (planes and straight
lines for 2–D and 1–D problems in Figs 3 and 4 respectively) that have the
same separation boundary (solid line and a dot in Figs 3 (right) and 4 respec-
tively). At the same time there are far fewer hyperplanes that can be defined as
canonical ones fulfilling (6). In Fig. 4, i.e., for a 1-dimensional input vector x,
the canonical hyperplane is unique. This is not the case for training patterns of
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higher dimension. Depending upon the configuration of class’ elements, various
canonical hyperplanes are possible.

Therefore, there is a need to define an optimal canonical hyperplane (OCSH)
as a canonical hyperplane having a maximal margin. This search for a sepa-
rating, maximal margin, canonical hyperplane is the ultimate learning goal in
statistical learning theory underlying SV machines. Carefully note the adjec-
tives used in the previous sentence. The hyperplane obtained from a limited
training data must have a maximal margin because it will probably better clas-
sify new data. It must be in canonical form because this will ease the quest
for significant patterns, here called support vectors. The canonical form of the
hyperplane will also simplify the calculations. Finally, the resulting hyperplane
must ultimately separate training patterns.

We avoid the derivation of an expression for the calculation of a distance
(margin M ) between the closest members from two classes for its simplicity
here. The margin M can be derived by both the geometric and algebraic argu-
ment and is given as

M =
2

‖w‖ . (7)

This important result will have a great consequence for the constructive (i.e.,
learning) algorithm in a design of a maximal margin classifier. It will lead to
solving a quadratic programming (QP) problem which will be shown shortly.
Hence, the “good old” gradient learning in NNs will be replaced by solution of
the QP problem here. This is the next important difference between the NNs
and SVMs and follows from the implementation of SRM in designing SVMs,
instead of a minimization of the sum of error squares, which is a standard cost
function for NNs.

Equation (7) is a very interesting result showing that minimization of a norm
of a hyperplane normal weight vector ‖w‖ =

√
wTw =

√

w2
1 + w2

2 + · · ·+ w2
n

leads to a maximization of a margin M . Because a minimization of
√

f is
equivalent to the minimization of f , the minimization of a norm ||w|| equals a
minimization of wTw =

∑n
i=1 w2

i = w2
1 + w2

2 + · · ·+ w2
n, and this leads to a

maximization of a margin M . Hence, the learning problem is

minimize
1

2
wTw, (8a)

subject to constraints introduced and given in (8b) below 3.

3A multiplication of wT w by 0.5 is for numerical convenience only, and it doesn’t change
the solution.
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Target y, i.e., d
The decision function is a (canonical) hyperplane d(x, w, b).
For a 1-dim input, it is a (canonical) straight line.

.
For a 1-dim input, it is a

5

4

The decision boundary

point or, a zero-order hy-
perplane.

The indicator function iF = sign(d(x, w, b)) is  
a step-wise function. It is a SV machine output o.

The two dashed lines repre-

sent decision functions tha

3

2

+1

0
1 3 42

t

are not canonical hyper-

planes. However, they do

have the same separation

boundary as the canonical

hyperplane here. 

-5

-4

-3

-2

5

Feature x1

d(x, k1w, k1b)

d(x, k2w, k2b)

-1

Figure 4. SV classification for 1-dimensional inputs by the linear de-
cision function. Graphical presentation of a canonical hyperplane. For
1-dimensional inputs, it is actually a canonical straight line (depicted as a
thick straight solid line) that passes through points (+2, +1) and (+3,−1)
defined as the support vectors (stars). The two dashed lines are the two
other decision hyperplanes (i.e., straight lines). The training input patterns
{x1 = 0.5, x2 = 1, x3 = 2} ∈ Class 1 have a desired or target value (la-
bel) y1 = +1. The inputs {x4 = 3, x5 = 4, x6 = 4.5, x7 = 5} ∈ Class 2
have the label y2 = −1.

Note that in the case of linearly separable classes empirical error equals zero
(Remp = 0 in (2a)) and minimization of wT w corresponds to a minimization
of a confidence term Ω. The OCSH, i.e., a separating hyperplane with the largest
margin defined by M = 2/||w||, specifies support vectors, i.e., training data
points closest to it, which satisfy yj [w

Txj + b ] ≡ 1, j = 1, NSV . For all the
other (non-SVs data points) the OCSH satisfies inequalities yj [w

Txj + b ] > 1.
In other words, for all the data, OCSH should satisfy the following constraints

yj [w
Txj + b ] > 1, i = 1, l (8b)

where l denotes a number of training data points, and NSV stands for a number
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 The optimal canonical separating hyperplane (OCSH) with the largest margin intersects 

x2

Class 1, y = +1

Margin M

Class 2, y = -1

w

x1

x2

x3

The optimal canonical separation hyperplane

Support Vectors

x1

Figure 5. The optimal canonical separating hyperplane (OCSH) with the
largest margin intersects halfway between the two classes. The points
closest to it (satisfying yj |wT

xj + b| = 1, j = 1, NSV ) are support vectors

and the OCSH satisfies yj |wT
xj + b| > 1, j = 1, l (where l denotes the

number of training data and NSV stands for the number of SV). Three
support vectors (x1 and x2 from class 1, and x3 from class 2) are the
textured training data.

of SVs. The last equation can be easily checked visually in Figs 3 and 4 for
2-dimensional and 1-dimensional input vectors x respectively. Thus, in order to
find the OCSH having a maximal margin, a learning machine should minimize
||w||2 subject to the inequality constraints (8b). This is a classic quadratic

optimization problem with inequality constraints. Such an optimization problem
is solved by the saddle point of the Lagrange functional (Lagrangian) 4

L(w, b, α) =
1

2
wTw −

l
∑

i=1

αi{yi[w
Txi + b ]− 1} (9)

where the αi are Lagrange multipliers. The search for an optimal saddle point

4In forming the Lagrangian, for constraints of the form fi > 0, the inequality constraints
equations are multiplied by nonnegative Lagrange multipliers (i.e., αi > 0) and subtracted
from the objective function.
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(wo, bo, αo) is necessary because Lagrangian L must be minimized with re-
spect to w and b, and has to be maximized with respect to nonnegative αi (i.e.,
αi > 0 should be found). This problem can be solved either in a primal space

(which is the space of parameters w and b) or in a dual space (which is the
space of Lagrange multipliers αi). The second approach gives insightful results
and we will consider the solution in a dual space below. In order to do that, we
use Karush-Kuhn-Tucker (KKT) conditions for the optimum of a constrained
function. In our case, both the objective function (9) and constraints (8b) are
convex and KKT conditions are necessary and sufficient conditions for a maxi-
mum of (9). These conditions are: at the saddle point (wo, bo, αo), derivatives
of Lagrangian L with respect to primal variables should vanish which leads to,

∂L

∂wo

= 0, i.e., wo =

l
∑

i=1

αiyixi, (10)

∂L

∂bo

= 0, i.e.,
l

∑

i=1

αiyi = 0 (11)

and the KKT complementarity conditions below (stating that at the solution
point the products between dual variables and constraints equals zero) must
also be satisfied,

αi{yi[w
T xi + b ]− 1} = 0, i = 1, l. (12)

Substituting (10) and (11) into a primal variables Lagrangian L(w, b, α) (9),
we change to the dual variables Lagrangian Ld(α)

Ld(α) =

l
∑

i=1

αi −
1

2

l
∑

i,j=1

yiyjαiαjx
T
i xj . (13)

In order to find the optimal hyperplane, a dual Lagrangian Ld(α) has to be
maximized with respect to nonnegative αi (i.e., αi must be in the nonnegative
quadrant) and with respect to the equality constraint as follows

αi > 0, i = 1, l, (14a)

l
∑

i=1

αiyi = 0. (14b)
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Note that the dual Lagrangian Ld(α) is expressed in terms of training data and
depends only on the scalar products of input patterns (xT

i xj). The dependency
of Ld(α) on a scalar product of inputs will be very handy later when analyzing
nonlinear decision boundaries and for general nonlinear regression. Note also
that the number of unknown variables equals the number of training data l. After
learning, the number of free parameters is equal to the number of SVs but it does
not depend on the dimensionality of input space. Such a standard quadratic

optimization problem can be expressed in a matrix notation and formulated as
follows:

Maximize
Ld(α) = −0.5αTHα + fT α, (15a)

subject to
yT α = 0, (15b)

αi > 0, i = 1, l (15c)

where α = [α1, α2, . . . , αl]
T , H denotes the Hessian matrix (Hij = yiyj(xixj) =

yiyjx
T
i xj ) of this problem 5, and f is an (l, 1) unit vector f = 1 = [1 1 . . . 1]T .

Solutions αoi of the dual optimization problem above determine the parameters
wo and bo of the optimal hyperplane according to (10) and (12) as follows

wo =

l
∑

i=1

αoiyixi, (16a)

bo =
1

NSV

NSV
∑

s=1

(
1

ys

−xT
s wo) =

1

NSV

NSV
∑

s=1

(ys−xT
s wo), s = 1, NSV . (16b)

In deriving (16b) we used the fact that y can be either +1 or -1, and 1/y =
y. NSV denotes the number of support vectors. There are two important
observations about the calculation of wo. First, an optimal weight vector wo, is
obtained in (16a) as a linear combination of the training data points and second,
wo (same as the bias term b0) is calculated by using only the selected data points
called support vectors (SVs). The fact that the summations in (16a) goes over
all training data patterns (i.e., from 1 to l) is irrelevant because the Lagrange
multipliers for all non-support vectors equal zero (αoi = 0, i = NSV + 1, l).

5Note that maximization of (15a) equals a minimization of Ld(α) = 0.5α
T
Hα − f

T
α,

subject to the same constraints.
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Finally, having calculated wo and bo we obtain a decision hyperplane d(x) and
an indicator function iF = o = sign(d(x)) as given below

d(x) =

l
∑

i=1

woixi + bo =

l
∑

i=1

yiαix
T xi + bo , iF = o = sign(d(x)). (17)

Training data patterns having non-zero Lagrange multipliers are called support

vectors. For linearly separable training data, all support vectors lie on the
margin and they are generally just a small portion of all training data (typically,
NSV ≪ l). Figs 3, 4 and 5 show the geometry of standard results for non-
overlapping classes.

Before presenting applications of OCSH for both overlapping classes and
classes having nonlinear decision boundaries, we will comment only on whether
and how SV based linear classifiers actually implement the SRM principle. The
more detailed presentation of this important property can be found in (Kecman,
2001; Schölkopf and Smola 2002)). First, it can be shown that an increase
in margin reduces the number of points that can be shattered i.e., the increase
in margin reduces the VC dimension, and this leads to the decrease of the
SVM capacity. In short, by minimizing ||w|| (i.e., maximizing the margin) the
SV machine training actually minimizes the VC dimension and consequently
a generalization error (expected risk) at the same time. This is achieved by
imposing a structure on the set of canonical hyperplanes and then, during the
training, by choosing the one with a minimal VC dimension. A structure on the
set of canonical hyperplanes is introduced by considering various hyperplanes
having different ||w||. In other words, we analyze sets SA such that ||w|| 6 A.
Then, if A1 6 A2 6 A3 6 . . . 6 An, we introduced a nested set SA1 ⊂ SA2 ⊂
SA3 ⊂ . . . ⊂ SAn. Thus, if we impose the constraint ||w|| 6 A, then the
canonical hyperplane cannot be closer than 1/A to any of the training points xi.
Vapnik in (Vapnik, 1995) states that the VC dimension h of a set of canonical
hyperplanes in ℜn such that ||w|| 6 A is

H 6 min[R2A2, n] + 1, (18)

where all the training data points (vectors) are enclosed by a sphere of the
smallest radius R. Therefore, a small ||w|| results in a small h, and minimiza-
tion of ||w|| is an implementation of the SRM principle. In other words, a
minimization of the canonical hyperplane weight norm ||w|| minimizes the VC
dimension according to (18). See also Fig. 4 that shows how the estimation
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error, meaning the expected risk (because the empirical risk, due to the linear
separability, equals zero) decreases with a decrease of a VC dimension. Finally,
there is an interesting, simple and powerful result (Vapnik, 1995) connecting the
generalization ability of learning machines and the number of support vectors.
Once the support vectors have been found, we can calculate the bound on the
expected probability of committing an error on a test example as follows

El[P (error)] 6
E[number of support vectors]

l
, (19)

where El denotes expectation over all training data sets of size l. Note how
easy it is to estimate this bound that is independent of the dimensionality of
the input space. Therefore, an SV machine having a small number of support
vectors will have good generalization ability even in a very high-dimensional
space.

Example below shows the SVM’s learning of the weights for a simple sep-
arable data problem in both the primal and the dual domain. The small number
and low dimensionality of data pairs is used in order to show the optimization
steps analytically and graphically. The same reasoning will be in the case of
high dimensional and large training data sets but for them, one has to rely on
computers and the insight in solution steps is necessarily lost.

Target y,
    i.e., d

+1

-2 -1 0

Feature x1

-1

b (a)

(c)

(b)

w

 1     2

1

-1

Figure 6. Left: Solving SVM classifier for 3 data shown. SVs are star
data. Right: Solution space w − b.

Example: Design of an SVM classifier for 3 data shown in Fig. 6 above.

First we solve the problem in the primal domain: From the constraints (8b) it
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follows
2w − 1 > b, (a)

w − 1 > b, (b)

b > 1. (c)

The three straight lines corresponding to the equalities above are shown in Fig. 6
right. The textured area is a feasible domain for the weight w and bias b. Note
that the area is not defined by the inequality (a), thus pointing to the fact that
the point −1 is not a support vector. Points −1 and 0 define the textured area
and they will be the supporting data for our decision function. The task is to
minimize (8a), and this will be achieved by taking the value w = 2. Then, from
(b), it follows that b = 1. Note that (a) must not be used for the calculation
of the bias term b. Because both the cost function (8a) and the constraints (8b)
are convex, the primal and the dual solution must produce same w and b. Dual
solution follows from maximizing (13) subject to (14) as follows

Ld = α1 + α2 + α3 −
1

2
[ α1 α2 α3]





4 2 0
2 1 0
0 0 0









α1

α2

α3



 ,

such that
−α1 − α2 + α3 = 0,

α1 > 0, α2 > 0, α3 > 0,

The dual Lagrangian is obtained in terms of α1 and α2 after expressing α3 from
the equality constraint and it is given as Ld = 2α1 +2α2− 0.5(4α2

1 +4α1α2 +
α2

2). Ld will have maximum for α1 = 0, and it follows that we have to find the
maximum of Ld = 2α2−0.5α2

2 which will be at α2 = 2. Note that the Hessian
matrix is extremely bad conditioned and if the QP problem is to be solved by
computer H should be regularized first. From the equality constraint it follows
that α3 = 2 too. Now, we can calculate the weight vector w and the bias b from
(16a) and (16b) as follows,

w =

3
∑

i=1

αiyixi = 0(−1)(−2) + 2(−1)(−1) + 2(1)0 = 2 .

The bias can be calculated by using SVs only, meaning from either point −1 or
point 0. Both result in same value as shown below

b = −1− 2(−1) = 1, or b = 1− 2(0) = 1.
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Linear Soft Margin Classifier for Overlapping Classes

The learning procedure presented above is valid for linearly separable data,
meaning for training data sets without overlapping. Such problems are rare in
practice. At the same time, there are many instances when linear separating hy-
perplanes can be good solutions even when data are overlapped (e.g., normally
distributed classes having the same covariance matrices have a linear separation
boundary). However, quadratic programming solutions as given above cannot
be used in the case of overlapping because the constraints yi[w

T xi + b] > 1,
i = 1, l given by (8b) cannot be satisfied. In the case of an overlapping (see
Fig 7), the overlapped data points cannot be correctly classified and for any
misclassified training data point xi, the corresponding αi will tend to infinity.
This particular data point (by increasing the corresponding αi value) attempts to
exert a stronger influence on the decision boundary in order to be classified cor-
rectly. When the αi value reaches the maximal bound, it can no longer increase
its effect, and the corresponding point will stay misclassified. In such a situa-
tion, the algorithm introduced above chooses (almost) all training data points as
support vectors. To find a classifier with a maximal margin, the algorithm pre-
sented in the section “Linear Maximal Margin Classifier for Linearly Separable
Data” above, must be changed allowing some data to be unclassified. Better
to say, we must leave some data on the “wrong” side of a decision boundary.
In practice, we allow a soft margin and all data inside this margin (whether on
the correct side of the separating line or on the wrong one) are neglected. The
width of a soft margin can be controlled by a corresponding penalty parameter
C (introduced below) that determines the trade-off between the training error
and VC dimension of the model.

The question now is how to measure the degree of misclassification and how
to incorporate such a measure into the hard margin learning algorithm given by
equations (8). The simplest method would be to form the following learning
problem

minimize
1

2
wT w + C(number of misclassified data), (20)

where C is a penalty parameter, trading off the margin size (defined by ||w||,
i.e., by wT w) for the number of misclassified data points. Large C leads
to small number of misclassifications, bigger wTw and consequently to the
smaller margin and vice versa. Obviously taking C = ∞ requires that the
number of misclassified data is zero and, in the case of an overlapping this is
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determines the trade-off between the training error and VC dimension of the model. 

4 = 0 

x2

Class 1, y = +1

Class 2, y = -1

x1

x3

x2

x1

d(x) = +1

d(x) = -1

1 = 1 - d(x1), 1 > 1,
misclassified positive class point 

2 = 1 + d(x2), 2 > 1,
misclassified      
negative class point

1

2

x4

1 3 0

Figure 7 The soft decision boundary for a dichotomization problem with data overlapping. Separa-

Figure 7. The soft decision boundary for a dichotomization problem with
data overlapping. Separation line (solid), margins (dashed) and support
vectors (textured training data points). 4 SVs in positive class (circles)
and 3 SVs in negative class (squares). 2 misclassifications for positive
class and 1 misclassification for negative class.

not possible. Hence, the problem may be feasible only for some value C <∞.
However, the serious problem with (20) is that the error’s counting can’t be

accommodated within the handy (meaning reliable, well understood and well
developed) quadratic programming approach. Also, the counting only can’t
distinguish between huge (or disastrous) errors and close misses! The possible
solution is to measure the distances ξi of the points crossing the margin from the
corresponding margin and trade their sum for the margin size as given below

minimize
1

2
wT w + C(sum of distances of the wrong side points). (21)

In fact this is exactly how the problem of the data overlapping was solved in
(Cortes, 1995; Cortes and Vapnik, 1995) — by generalizing the optimal “hard”
margin algorithm. They introduced the nonnegative slack variables ξi(i = 1, l)
in the statement of the optimization problem for the overlapped data points.
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Now, instead of fulfilling (8a) and (8b), the separating hyperplane must satisfy

minimize
1

2
wT w + C

l
∑

i=1

ξi, (22a)

subject to
yi[w

Txi + b ] > 1− ξi, i = 1, l, ξi > 0, (22b)

i.e., subject to

wT xi + b > +1− ξi, for yi = +1, ξi > 0, (22c)

wT xi + b > −1 + ξi, for yi = −1, ξi > 0. (22d)

Hence, for such a generalized optimal separating hyperplane, the functional to
be minimized comprises an extra term accounting the cost of overlapping errors.
In fact the cost function (22a) can be even more general as given below

minimize
1

2
wTw + C

l
∑

i=1

ξk
i , (22e)

subject to same constraints. This is a convex programming problem that is
usually solved only for k = 1 or k = 2, and such soft margin SVMs are dubbed
L1 and L2 SVMs respectively. By choosing exponent k = 1, neither slack
variables ξi nor their Lagrange multipliers βi appear in a dual Lagrangian Ld.
Same as for a linearly separable problem presented previously, for L1 SVMs
(k = 1) here, the solution to a quadratic programming problem (22), is given
by the saddle point of the primal Lagrangian Lp(w, b, ξ, α, β) shown below

Lp(w, b, ξ, α, β) =
1

2
wTw + C

l
∑

i=1

ξi−

−
l

∑

i=1

αi{yi[w
T xi + b ]− 1 + ξi} −

l
∑

i=1

βixi, for L1 SVM

(23)

where αi and βi are the Lagrange multipliers. Again, we should find an optimal

saddle point (wo, bo, ξo, αo, βo) because the Lagrangian Lp has to be minimized

with respect to w, b and ξ, and maximized with respect to nonnegative αi and
βi. As before, this problem can be solved in either a primal space or dual space

(which is the space of Lagrange multipliers αi and βi). Again, we consider a
solution in a dual space as given below by using
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• standard conditions for an optimum of a constrained function

∂L

∂wo

= 0, i.e., wo =

l
∑

i=1

αiyixi, (24)

∂L

∂bo

= 0, i.e.,
l

∑

i=1

αiyi = 0 (25)

∂L

∂ξio

= 0, i.e., αi + βi = C, (26)

• and the KKT complementarity conditions below,

αi{yi[w
T xi + b ]− 1 + ξi} = 0, i = 1, l, (27a)

βiξi = (C − αi)ξi = 0, i = 1, l. (27b)

At the optimal solution, due to the KKT conditions (27), the last two terms in the
primal Lagrangian Lp given by (23) vanish and the dual variables Lagrangian

Ld(α), for L1 SVM, is not a function of βi. In fact, it is same as the hard
margin classifier’s Ld given before and repeated here for the soft margin one,

Ld(α) =
l

∑

i=1

αi −
1

2

l
∑

i,j=1

yiyjαiαjx
T
i xj . (28)

In order to find the optimal hyperplane, a dual Lagrangian Ld(α) has to be
maximized with respect to nonnegative and (unlike before) smaller than or equal
to C, αi. In other words with

C > αi > 0, i = 1, l, (29a)

and under the constraint (25), i.e., under

l
∑

i=1

αiyi = 0. (29b)

Thus, the final quadratic optimization problem is practically same as for the
separable case the only difference being in the modified bounds of the Lagrange
multipliers αi. The penalty parameter C, which is now the upper bound on αi,
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is determined by the user. The selection of a “good” or “proper” C is always
done experimentally by using some cross-validation technique. Note that in the
previous linearly separable case, without data overlapping, this upper bound
C = ∞. We can also readily change to the matrix notation of the problem
above as in equations (15). Most important of all is that the learning problem
is expressed only in terms of unknown Lagrange multipliers αi, and known
inputs and outputs. Furthermore, optimization does not solely depend upon
inputs xi which can be of a very high (inclusive of an infinite) dimension, but
it depends upon a scalar product of input vectors xi. It is this property we will
use in the next section where we design SV machines that can create nonlinear
separation boundaries. Finally, expressions for both a decision function d(x)
and an indicator function iF = sign(d(x)) for a soft margin classifier are same
as for linearly separable classes and are also given by (17).

From (27) follows that there are only three possible solutions for αi (see
Fig. 7)

1. αi = 0, ξi = 0 → data point xi is correctly classified.
2. C > αi > 0 → then, the two complementarity conditions must result

result in yi[w
Txi + b ]− 1+ ξi = 0, and ξi = 0. Thus, yi[w

Txi + b ] = 1
and xi is a support vector. The support vectors with C > αi > 0 are
called unbounded or free support vectors. They lie on the two margins.

3. αi = C → then, yi[w
T xi+b ]−1+ξi = 0, and ξi > 0, and xi is a support

vector. The support vectors with αi = C are called bounded support

vectors. They lie on the “wrong” side of the margin. For 1 > ξi > 0, xi

is still correctly classified, and if ξi > 1, xi is misclassified.

For L2 SVM the second term in the cost function (22e) is quadratic, i.e.,
C

∑l

i=1 ξ2
i , and this leads to changes in a dual optimization problem which

is now,

Ld(α) =

l
∑

i=1

αi −
1

2

l
∑

i,j=1

yiyjαiαj

(

xT
i xj +

δij

C

)

, (30)

subject to
αi > 0, i = 1, l, (31a)

l
∑

i=1

αiyi = 0. (31b)

where, δij = 1 for i = j, and it is zero otherwise. Note the change in Hessian
matrix elements given by second terms in (30), as well as that there is no upper
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bound on αi. The detailed analysis and comparisons of the L1 and L2 SVMs
is presented in (Abe, 2004). We use the most popular L1 SVMs here, because
they usually produce more sparse solutions, i.e., they create a decision function
by using less SVs than the L2 SVMs.

The Nonlinear Classifier

The linear classifiers presented in two previous sections are very limited. Mostly,
classes are not only overlapped but the genuine separation functions are nonlin-
ear hypersurfaces. A nice and strong characteristic of the approach presented
above is that it can be easily (and in a relatively straightforward manner) ex-
tended to create nonlinear decision boundaries. The motivation for such an
extension is that an SV machine that can create a nonlinear decision hypersur-
face will be able to classify nonlinearly separable data. This will be achieved
by considering a linear classifier in the so-called feature space that will be in-
troduced shortly. A very simple example of a need for designing nonlinear
models is given in Fig. 8 where the true separation boundary is quadratic. It is
obvious that no errorless linear separating hyperplane can be found now. The
best linear separation function shown as a dashed straight line would make six
misclassifications (textured data points; 4 in the negative class and 2 in the
positive one). Yet, if we use the nonlinear separation boundary we are able
to separate two classes without any error. Generally, for n-dimensional input
patterns, instead of a nonlinear curve, an SV machine will create a nonlinear
separating hypersurface.

The basic idea in designing nonlinear SV machines is to map input vectors
x ∈ ℜn into vectors Φ(x) of a higher dimensional feature space F (where Φ
represents mapping: ℜn → ℜf ), and to solve a linear classification problem in
this feature space

x ∈ ℜn → Φ(x) = [φ1(x) φ2(x) . . . φn(x)]T ∈ ℜf . (32)

A mapping Φ(x) is chosen in advance, i.e., it is a fixed function. Note that
an input space (x-space) is spanned by components xi of an input vector x and
a feature space F (Φ-space) is spanned by components φi(x) of a vector Φ(x).
By performing such a mapping, we hope that in a Φ-space, our learning algo-
rithm will be able to linearly separate images of x by applying the linear SVM
formulation presented above. (In fact, it can be shown that for a whole class
of mappings the linear separation in a feature space is always possible. Such
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x2

Class 1, y = +1

Class 2, y = -1
x1

Points misclassified by  
linear separation bound-
ary are textured 

Nonlinear separation boundary 

Figure 8. A nonlinear SVM without data overlapping. A true separation
is a quadratic curve. The nonlinear separation line (solid), the linear
one (dashed) and data points misclassified by the linear separation line
(the textured training data points) are shown. There are 4 misclassified
negative data and 2 misclassified positive ones. SVs are not shown.

mappings will correspond to the positive definite kernels that will be shown
shortly). We also expect this approach to again lead to solving a quadratic op-
timization problem with similar constraints in a Φ-space. The solution for an
indicator function

iF (x) = sign(wT Φ(x) + b) = sign
(

l
∑

i=1

yiαiΦ
T (xi)Φ(x) + b

)

,

which is a linear classifier in a feature space, will create a nonlinear separating
hypersurface in the original input space given by (33) below. (Compare this so-
lution with (17) and note the appearances of scalar products in both the original
X-space and in the feature space F ).

The equation for an iF (x) just given above can be rewritten in a “neural
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networks” form as follows

iF (x) = sign
(

l
∑

i=1

yiαiΦ
T (xi)Φ(x) + b

)

=

= sign
(

l
∑

i=1

yiαik(xi,x) + b
)

= sign
(

l
∑

i=1

νik(xi,x) + b
)

(33)

where vi corresponds to the output layer weights of the “SVM’s network”
and k(xi,x) denotes the value of the kernel function that will be introduced
shortly 6. Note the difference between the weight vector w which norm should
be minimized and which is the vector of the same dimension as the feature
space vector Φ(x) and the weightings vi = αiyi that are scalar values compos-
ing the weight vector v which dimension equals the number of training data
points l. The (l − NSVs) of vi components are equal to zero, and only NSVs

entries of v are nonzero elements.
A simple example below (Fig 9) should exemplify the idea of a nonlinear

mapping to (usually) higher dimensional space and how it happens that the data
become linearly separable in the F -space.

Consider solving the simplest 1-D classification problem given the input
and the output (desired) values as follows: x = [−1 0 1]T and d = y =
[−1 1 − 1]T . Here we choose the following mapping to the feature space:
Φ(x) = [ϕ1(x) ϕ2(x) ϕ3(x)]T = [x2

√
2x 1]T )

The mapping produces the following three points in the feature space (shown
as the rows of the matrix F (F standing for features))

F =





1 −
√

2 1
0 0 1

1
√

2 1





T

.

These three points are linearly separable by the plane ϕ3(x) = 2ϕ1(x) in a
feature space as shown in Fig. 10. It is easy to show that the mapping obtained
by Φ(x) = [x2

√
2x 1]T is a scalar product implementation of a quadratic

kernel function (xT
i xj + 1)2 = k(xi,xj). In other words, ΦT (xi)Φ(xj) =

k(xi,xj). This equality will be introduced shortly.
There are two basic problems when mapping an input x-space into higher

order F -space:
6vi equals yiαi in the classification case presented above and it is equal to (αi − α∗

i ) in
the regression problems.
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x3 = 1 x2 = 0 x1 = -1 x

d

-1

1

d(x)

iF(x)

Figure 9. A nonlinear 1-dimensional classification problem. One possi-
ble solution is given by the decision function d(x) (solid curve) i.e., by
the corresponding indicator function defined as iF = sign(d(x)) (dashed
stepwise function).

1) the choice of mapping Φ(x) that should result in a “rich” class of decision
hypersurfaces,

2) the calculation of the scalar product ΦT (x)Φ(x) that can be computation-
ally very discouraging if the number of features f (i.e., dimensionality f
of a feature space) is very large.

The second problem is connected with a phenomenon called the “curse of

dimensionality”. For example, to construct a decision surface corresponding
to a polynomial of degree two in an n-D input space, a dimensionality of a
feature space f = n(n + 3)/2. In other words, a feature space is spanned by f
coordinates of the form

z1 = x1, . . . , zn = xn (n coordinates),

zn+1 = (x1)
2, . . . , z2n = (xn)2 (next n coordinates),

z2n+1 = x1x2, . . . , zf = xnxn−1 (n(n− 1)/2 coordinates),

and the separating hyperplane created in this space, is a second-degree poly-
nomial in the input space (Vapnik, 1998). Thus, constructing a polynomial of
degree two only, in a 256-dimensional input space, leads to a dimensionality of
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x
22x

Const 1

3-D feature space

3 [1 2 1]
T

x

2 [0 0 1]Tx
1 [1 2 1]Tx

Figure 10. The three data points of a problem in Fig. 9 are lin-
early separable in the feature space (obtained by the mapping Φ(x) =
[ϕ1(x) ϕ2(x) ϕ3(x)]T = [x2

√
2x 1]T ). The separation boundary is

given as the plane ϕ3(x) = 2ϕ1(x) shown in the figure.

a feature space f = 33, 152. Performing a scalar product operation with vectors
of such, or higher, dimensions, is not a cheap computational task. The prob-
lems become serious (and fortunately only seemingly unsolvable) if we want
to construct a polynomial of degree 4 or 5 in the same 256-dimensional space
leading to the construction of a decision hyperplane in a billion-dimensional
feature space.

This explosion in dimensionality can be avoided by noticing that in the
quadratic optimization problem given by (13) and (28), as well as in the final
expression for a classifier, training data only appear in the form of scalar

products xT
i xj . These products will be replaced by scalar products

ΦT (x)Φ(x) = [φ1(x), φ2(x), . . . , φn(x)]T [φ1(x), φ2(x), . . . , φn(x)]

in a feature space F , and the latter can be and will be expressed by using the
kernel function K(xi,xj) = ΦT (xi)Φ(xj).
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Note that a kernel function K(xi,xj) is a function in input space. Thus, the
basic advantage in using kernel function K(xi,xj) is in avoiding performing
a mapping Φ(x) at all. Instead, the required scalar products in a feature space
ΦT (xi)Φ(xj), are calculated directly by computing kernels K(xi,xj) for given
training data vectors in an input space. In this way, we bypass a possibly ex-
tremely high dimensionality of a feature space F . Thus, by using the chosen
kernel K(xi,xj), we can construct an SVM that operates in an infinite dimen-
sional space (such a kernel function is a Gaussian kernel function given in table
2 below). In addition, as will be shown below, by applying kernels we do not
even have to know what the actual mapping Φ(x) is. A kernel is a function K
such that

K(xi,xj) = ΦT (xi)Φ(xj). (34)

There are many possible kernels, and the most popular ones are given in Table
2. All of them should fulfill the so-called Mercer’s conditions. The Mercer’s
kernels belong to a set of reproducing kernels. For further details see (Mer-
cer, 1909; Aizerman et al, 1964; Smola and Schölkopf, 1997; Vapnik, 1998;
Kecman, 2001).

The simplest is a linear kernel defined as K(xi,xj) = xT
i xj . Below we

show a few more kernels.

Table 2. Popular Admissible Kernels

Kernel functions Type of classifier 

K(x, xi) = (xTxi)  Linear, dot product, kernel, CPD 

K(x, xi) = [(xTxi) + 1]
d    Complete polynomial of degree d, PD

11
[( ) ( )]

2( , )
T

i i

i
K e

x x x x

x x Gaussian RBF, PD

K(x, xi) = tanh[(xTxi) + b]* Multilayer perceptron, CPD

2

1
( , )

|| ||
i

i

K x x
x x

Inverse multiquadric function, PD

*only for certain values of b, (C)PD = (conditionally) positive definite
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POLYNOMIAL KERNELS

Let x ∈ ℜ2 i.e., x = [x1 x2]
T , and if we choose Φ(x) = [x2

1

√
2x1x2 x2

2]
T

(i.e., there is an ℜ2 → ℜ3 mapping), then the dot product

ΦT (xi)Φ(xj) = [x2
i1

√
2xi1xi2 x2

i2][x
2
j1

√
2xj1xj2 x2

j2]
T =

= [x2
i1x

2
j1 2 xi1x2xj1xj2 x2

i2x
2
j2] =

= (xT
i xj)

2 = K(xi,xj)

or
K(xi,xj) = (xT

i xj)
2 = ΦT (xi)Φ(xj).

Note that in order to calculate the scalar product in a feature space ΦT (xi)Φ(xj),
we do not need to perform the mapping Φ(x) = [x2

1

√
2x1x2 x2

2 ]T at all.
Instead, we calculate this product directly in the input space by computing
(xT

i xj)
2. This is very well known under the popular name of the kernel trick.

Interestingly, note also that other mappings such as an

ℜ2 → ℜ3 mapping given by Φ(x) = [x2
1 − x2

2 2x1x2 x2
1 + x2

2], or an
ℜ2 → ℜ4 mapping given by Φ(x) = [x2

1 x1x2 x1x2 x2
2],

also accomplish the same task as (xT
i xj)

2.
Now, assume the following mapping

Φ(x) = [1
√

2 x1

√
2x2

√
2x1x2 x2

1 x2
1],

i.e., there is an ℜ2 → ℜ3 mapping plus bias term as the constant 6th dimension’s
value. Then the dot product in a feature space F is given as

ΦT (xi)Φ(xj) = 1 + 2xi1xj1 + 2xi2xj2 + 2xi1xi2xj1xj2 + x2
i1x

2
j1 + x2

i2x
2
j2 =

= 1 + 2(xT
i xj) + (xT

i xj)
2 =

= (xT
i xj + 1)2 = K(xi,xj)

or
(xi,xj) = (xT

i xj + 1)2 = ΦT (xi)Φ(xj).

Thus, the last mapping leads to the second order complete polynomial.
Many candidate functions can be applied to a convolution of an inner prod-

uct (i.e., for kernel functions) K(x,xi) in an SV machine. Each of these func-
tions constructs a different nonlinear decision hypersurface in an input space. In
the first three rows, the table 2 shows the three most popular kernels in SVMs’
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in use today, and the inverse multiquadrics one as an interesting and powerful
kernel to be proven yet.

The positive definite (PD) kernels are the kernels which Gramm matrix G

(a.k.a. Grammian, or a design matrix) calculated by using all the l training data
points is positive definite (meaning all its eigenvalues are strictly positive, i.e.,
λi > 0, i = 1, l)

G = K(x,xi) =











k(x1,x1) k(x1,x2) · · · k(x1,xl)
k(x2,x1) k(x2,x2) · · · k(x2,xl)

...
...

...
...

k(xl,x1) k(xl,x2) · · · k(xl,xl)











(35)

The kernel matrix G is a symmetric one. Even more, any symmetric positive
definite matrix can be regarded as a kernel matrix, that is — as an inner product
matrix in some space.

Finally, we arrive at the point of presenting the learning in nonlinear clas-
sifiers (in which we are ultimately interested here). The learning algorithm
for a nonlinear SV machine (classifier) follows from the design of an optimal

separating hyperplane in a feature space. This is the same procedure as the
construction of a “hard” (13) and “soft” (28) margin classifiers in an x-space
previously. In a Φ(x)-space, the dual Lagrangian, given previously by (13) and
(28), is now

Ld(α) =

l
∑

i=1

αi −
1

2

l
∑

i,j=1

αiαjyiyj ΦT
i Φj , (36)

and, according to (34), by using chosen kernels, we should maximize the fol-
lowing dual Lagrangian

Ld(α) =

l
∑

i=1

αi −
1

2

l
∑

i,j=1

αiαjyiyj K(x,xi), (37)

subject to

αi > 0, i = 1, l, and
l

∑

i=1

αiyi = 0. (37a)

In a more general case, because of a noise or due to generic class’ features,
there will be an overlapping of training data points. Nothing but constraints for
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αi change. Thus, the nonlinear “soft” margin classifier will be the solution of
the quadratic optimization problem given by (37) subject to constraints

C > αi > 0, i = 1, l and
l

∑

i=1

αiyi = 0. (37b)

Again, the only difference to the separable nonlinear classifier is the upper
bound C on the Lagrange multipliers αi. In this way, we limit the influence
of training data points that will remain on the “wrong” side of a separating
nonlinear hypersurface. After the dual variables are calculated, the decision
hypersurface d(x) is determined by

d(x) =

l
∑

i=1

yiαiK(x,xi) + b =

l
∑

i=1

νiK(x,xi) + b, (38)

and the indicator function is

iF (x) = sign[d(x)] = sign
[

l
∑

i=1

νiK(x,xi) + b
]

.

Note that the summation is not actually performed over all training data
but rather over the support vectors, because only for them do the Lagrange
multipliers differ from zero. The existence and calculation of a bias b is now
not a direct procedure as it is for a linear hyperplane. Depending upon the
applied kernel, the bias b can be implicitly part of the kernel function. If, for
example, Gaussian RBF is chosen as a kernel, it can use a bias term as the
(f + 1)st feature in F -space with a constant output = +1, but not necessarily.
In short, all PD kernels do not necessarily need an explicit bias term b, but b can
be used. In section “On the Equality of Kernel AdaTron and Sequential Minimal
Optimization and Alike Algorithms for Kernel Machines” we will develop new
iterative learning algorithm for models having a bias term b 7. Same as for the
linear SVM, (37) can be written in a matrix notation as

maximize
Ld(α) = −0.5αTHα + fT α, (39a)

subject to
yT α = 0,

7More on this can be found in (Kecman, Huang, and Vogt, 2005) as well as in the (Vogt
and Kecman, 2005).
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and
C > αi > 0, i = 1, l. (39c)

where α = [α1, α2, . . . , αl]
T , denotes the Hessian matrix

Hij = yiyjK(xi,xj)

of this problem and f is an (l, 1) unit vector f = 1 = [1 1 . . . 1]T . Note that
if K(xi,xj) is the positive definite matrix, then so is the matrix yiyjK(xi,xj)
too.

The following 1-D example (just for the sake of graphical presentation)
will show the creation of a linear decision function in a feature space and a
corresponding nonlinear (quadratic) decision function in an input space.

Suppose we have 4 1-D data points given as x1 = 1, x2 = 2, x3 = 5,
x4 = 6, with data at 1, 2, and 6 as class 1 and the data point at 5 as class 2, i.e.,
y1 = −1, y2 = −1, y3 = 1, y4 = −1. We use the polynomial kernel of degree
2, K(x, y) = (xy + 1)2. C is set to 50, which is of lesser importance because
the constraints will be not imposed in this example for maximal value for the
dual variables alpha will be smaller than C = 50.

Case 1: Working with a bias term b as given in (38).
We first find αi(i = 1, . . . , 4) by solving dual problem (39) having a Hessian

matrix

H =









4 9 −36 49
9 25 −121 169

−36 −121 676 −961
49 169 −961 1369









.

Alphas are α1 = 0, α2 = 2.499999, α3 = 7.333333, α4 = 4.833333 and the
bias b will be found by using (16b), or by fulfilling the requirements that the
values of a decision function at the support vectors should be the given yi. The
model (decision function) is given by

d(x) =

4
∑

i=1

yiαiK(x, xi) + b =

4
∑

i=1

νi(xxi + 1)2 + b,

or by

d(x) = 2.499999(−1)(2x+1)2+7.333333(1)(5x+1)2+4.833333(−1)(6x+1)2+b,

d(x) = −0.666667x2 + 5.333333x + b.
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Bias b is determined from the requirement that at the SV points 2, 5 and 6, the
outputs must be −1, 1 and −1 respectively. Hence, b = −9, resulting in the
decision function

d(x) = −0.666667x2 + 5.333333x + b.

NL SV classification. 1D input. Polynomial, quadratic, kernel used

              1           2                                   5           6

1

-1

y, d

x

Figure 11. The nonlinear decision function (solid) and the indicator func-
tion (dashed) for 1-D overlapping data. By using a complete second order
polynomial the model with and without a bias term b are same.

The nonlinear (quadratic) decision function and the indicator one are shown
in Fig. 11. Note that in calculations above 6 decimal places have been used for
alpha values. The calculation is numerically very sensitive, and working with
fewer decimals can give very approximate or wrong results.

The complete polynomial kernel as used in the case 1, is positive definite

and there is no need to use an explicit bias term b as presented above. Thus,
one can use the same second order polynomial model without the bias term
b. Note that in this particular case there is no equality constraint equation that
originates from an equalization of the primal Lagrangian derivative in respect
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to the bias term b to zero. Hence, we do not use (39b) while using a positive
definite kernel without bias as it will be shown below in the case 2.

Case 2: Working without a bias term b.

Because we use the same second order polynomial kernel, the Hessian ma-
trix H is same as in the case 1. The solution without the equality constraint for
alphas is: α1 = 0, α2 = 24.999999, α3 = 43.333333, α4 = 27.333333. The
model (decision function) is given by

d(x) =

4
∑

i=1

yiαiK(x, xi) =

4
∑

i=1

νi(xxi + 1)2,

or by

d(x) = 2.499999(−1)(2x+1)2+7.333333(1)(5x+1)2+4.833333(−1)(6x+1)2,

d(x) = −0.666667x2 + 5.333333x + b.

Thus the nonlinear (quadratic) decision function and consequently the indicator
function in the two particular cases are equal.

Example: Nonlinear classifier for an Exclusive-Or (XOR) problem

In the next example shown by Figs 12 and 13 we present all the impor-
tant mathematical objects of a nonlinear SV classifier by using a classic XOR
(exclusive-or) problem. The graphs show all the mathematical functions (ob-
jects) involved in a nonlinear classification. Namely, the nonlinear decision
function d(x), the NL indicator function iF (x), training data (xi), support vec-
tors (xSV )i and separation boundaries.

The same objects will be created in the cases when the input vector x is
of a dimensionality n > 2, but the visualization in these cases is not possible.
In such cases one talks about the decision hyperfunction (hypersurface) d(x),
indicator hyperfunction (hypersurface) iF (x), training data (xi), support vectors
(xSV )i and separation hyperboundaries (hypersurfaces).

Note the different character of a d(x), iF (x) and separation boundaries in
the two graphs given below. However, in both graphs all the data are cor-
rectly classified. Fig. 12 shows the resulting functions for the Gaussian kernel
functions, while Fig. 13 presents the solution for a complete second order poly-
nomial kernel. Below, we present the analytical derivation of the (saddle like)
decision function in the later (polynomial kernel) case.
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Input x1

Input x2

  Decision and indicator function of a NL SVM

Separation 
boundaries

x2

x1

Figure 12. XOR problem. Kernel functions are the 2-D Gaussians and
they are not shown here. The nonlinear decision function, the nonlinear
indicator function and the separation boundaries are shown. All four data
are chosen as support vectors.

The analytic solution to the Fig. 13 for the second order polynomial kernel

(i.e., for (xT
i xj + 1)2 = ΦT (xi)Φ(xj), where

Φ(x) = [1
√

2x1

√
2x2

√
2 x1x2 x2

1 x2
2],

no explicit bias and C =∞) goes as follows. Inputs and desired outputs are,

x =

[

0 1 1 0
0 1 0 1

]T

, y = d =
[

1 1 −1 −1
]T

.

The dual Lagrangian (37) has the Hessian matrix

H =









1 1 −1 −1
1 9 −4 −4
−1 −4 4 1
−1 −4 1 4









.
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Input plane

Hyperbolic separation boundaries 

Decision and indicator function of a nonlinear SVM 

x1

x2

Figure 13. XOR problem. Kernel function is a 2-D polinomial. The non-
linear decision function, the nonlinear indicator function and the separation
boundaries are shown. All four data are support vectors.

The optimal solution can be obtained by taking the derivative of Ld with
respect to dual variables αi(i = 1, 4) and by solving the resulting linear system
of equations taking into account the constraints. The solution to

α1 + α2 − α3 − α4 = 1,
α1 + 9α2 − 4α3 − 4α4 = 1,
−α1 − 4α2 + 4α3 + α4 = 1,
−α1 − 4α2 + α3 + 4α4 = 1,

subject to αi > 0, (i = 1, 4), is α1 = 4.3333, α2 = 2.0000, α3 = 2.6667 and
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α4 = 2.6667. The decision function in a 3-D space is

d(x) =

4
∑

i=1

yiαiΦ
T (xi)Φ(x) =

=
(

4.3333
[

1 0 0 0 0 0
]

+ 2
[

1
√

2
√

2
√

2 1 1
]

−
−2.6667

[

1
√

2 0 0 1 0
]

− 2.6667
[

1 0
√

2 0 0 1
])

Φ(x) =

=
[

1 −0.9429 −0.9429 2.8284 −0.6667 −0.6667
]

×

×
[

1
√

2x1

√
2x2

√
2 x1x2 x2

1 x2
2

]T
,

and finally

d(x) = 1− 1.3335x1 − 1.3335x2 + 4x1x2 − 0.6667x2
1 − 0.6667x2

2.

It is easy to check that the values of d(x) for all the training inputs in x equal
the desired values in d. The d(x) is the saddle-like function shown in Fig. 13.

Here we have shown the derivation of an expression for d(x) by using
explicitly a mapping Φ. Again, we do not have to know what mapping Φ is at
all. By using kernels in input space, we calculate a scalar product required in
a (possibly high dimensional) feature space and we avoid mapping Φ(x). This
is known as kernel “trick”. It can also be useful to remember that the way in
which the kernel “trick” was applied in designing an SVM can be utilized in all
other algorithms that depend on the scalar product (e.g., in principal component
analysis or in the nearest neighbor procedure).

Regression by Support Vector Machines

In the regression, we estimate the functional dependence of the dependent (out-
put) variable y ∈ ℜ on an n-dimensional input variable x. Thus, unlike in
pattern recognition problems (where the desired outputs yi are discrete values
e.g., Boolean) we deal with real valued functions and we model an ℜn to ℜ1

mapping here. Same as in the case of classification, this will be achieved by
training the SVM model on a training data set first. Interestingly and impor-
tantly, a learning stage will end in the same shape of a dual Lagrangian as in
classification, only difference being in a dimensionalities of the Hessian matrix
and corresponding vectors which are of a double size now e.g., H is a (2l, 2l)
matrix.
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Initially developed for solving classification problems, SV techniques can be
successfully applied in regression, i.e., for a functional approximation problems
(Drucker et al, (1997), Vapnik et al, (1997)). The general regression learning
problem is set as follows — the learning machine is given l training data from
which it attempts to learn the input-output relationship (dependency, mapping
or function) f(x). A training data set

D = {[x(i), y(i)] ∈ ℜn ×ℜ, i = 1, . . . , l}

consists of l pairs (x1, y1), (x2, y2), . . . , (xl, yl), where the inputs x are n-
dimensional vectors x ∈ ℜn and system responses y ∈ ℜ, are continuous
values.

We introduce all the relevant and necessary concepts of SVMs’ regression in
a gentle way starting again with a linear regression hyperplane f(x,w) given
as

f(x,w) = wTx + b. (40)

In the case of SVM’s regression, we measure the error of approximation instead
of the margin used in classification. The most important difference in respect to
classic regression is that we use a novel loss (error) functions here. This is the
Vapnik’s linear loss function with ε-insensitivity zone defined as

E(x, y, f) = |y − f(x,w)|ε =











0, if |y − f(x,w)| 6 ε,

|y − f(x,w)| − ε, otherwise,
(41a)

or as,
e(x, y, f) = max(0, |y − f(x,w)| − ε). (41b)

Thus, the loss is equal to 0 if the difference between the predicted f(xi,w)
and the measured value yi is less than ε. Vapnik’s ε-insensitivity loss function
(41) defines an ε tube (Fig. 15). If the predicted value is within the tube the
loss (error or cost) is zero. For all other predicted points outside the tube, the
loss equals the magnitude of the difference between the predicted value and the
radius ε of the tube.

The two classic error functions are: a square error, i.e., L2 norm (y − f)2,
as well as an absolute error, i.e., L1 norm, least modulus |y − f | introduced
by Yugoslav scientist Rudjer Boskovic in 1755 (Eisenhart, 1962). The latter
error function is related to Huber’s error function. An application of Huber’s
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) quadratic (L2 norm)   b) absolute error    c) -insensitivity

 and Huber’s (dashed)      (least modulus, L  norm)

E           E         E

1

y - f(x, w)      y - f(x, w)       y - f(x, w)

a

Figure 14. Loss (error) functions

error function results in a robust regression. It is the most reliable technique if
nothing specific is known about the model of a noise. We do no present Huber’s
loss function here in analytic form. Instead, we show it by a dashed curve in
Fig. 14a. In addition, Fig. 14 shows typical shapes of all mentioned error (loss)
functions above.

Note that for ε = 0, Vapnik’s loss function equals a least modulus function.
Typical graph of a (nonlinear) regression problem as well as all relevant mathe-
matical variables and objects required in, or resulted from, a learning unknown
coefficients wi are shown in Fig. 15.

We will formulate an SVM regression’s algorithm for the linear case first
and then, for the sake of a NL model design, we will apply mapping to a
feature space, utilize the kernel “trick” and construct a nonlinear regression
hypersurface. This is actually the same order of presentation as in classification
tasks. Here, for the regression, we ‘measure’ the empirical error term Remp

by Vapnik’s ε-insensitivity loss function given by (41) and shown in Fig. 14c
(while the minimization of the confidence term Ω will be realized through a
minimization of wTw again). The empirical risk is given as

Rε
emp(w, b) =

1

l

l
∑

i=1

∣

∣yi −wT xi − b
∣

∣

ε
, (42)

Fig. 16 shows two linear approximating functions as dashed lines inside an
ε-tube having the same empirical risk Rε

emp as the regression function f(x,w)
on the training data.

140 УДК 001(06)+004.032.26 (06) Нейронные сети



В.КЕЦМАН

x

 y    f(x, w)

Predicted f(x, w)

solid line 

Measured value 

i

j
*

 yi

 yj

Measured value 

Figure 15. The parameters used in (1-D) support vector regression. Filled
squares data � are support vectors, and the empty ones � are not. Hence,
SVs can appear only on the tube boundary or outside the tube.

As in classification, we try to minimize both the empirical risk Rε
emp and

||w||2 simultaneously. Thus, we construct a linear regression hyperplane

f(x,w) = wT x + b

by minimizing

R =
1

2
||w||2 + C

l
∑

i=1

∣

∣yi − f(xi,w)
∣

∣

ε
, (43)

Note that the last expression resembles the ridge regression scheme. However,
we use Vapnik’s ε-insensitivity loss function instead of a squared error now.
From (41) and Fig. 15 it follows that for all training data outside an ε-tube,

|yi − f(x,w)| − ε = ξ for data “above” an ε-tube, or
|yi − f(x,w)| − ε = ξ∗ for data “below” an ε-tube .

Thus, minimizing the risk R above equals the minimization of the following
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Two approximating functions hav-

ing the same empirical risk as the

regression function f(x, w).

x

 y     f(x, w)

Regression function 

f(x, w), solid line 

 tube 

Measured training data 

points

Figure 16. Two linear approximations inside an ε tube (dashed lines)
have the same empirical risk Rε

emp on the training data as the regression
function (solid line).

risk

Rw,ξ,ξ∗ =
[1

2
||w||2 + C

(

l
∑

i=1

ξi +

l
∑

i=1

ξ∗i

)]

, (44)

under constraints

yi −wTxi − b 6 ε + ξi, i = 1, l, (45a)

wTxi + b− yi 6 ε + ξ∗i , i = 1, l, (45b)

ξi > 0, ξ∗i > 0, i = 1, l, (45c)

where ξi and ξ∗i are slack variables shown in Fig. 15 for measurements “above”
and “below” an ε-tube respectively. Both slack variables are positive values.
Lagrange multipliers αi and α∗

i (that will be introduced during the minimization
below) related to the first two sets of inequalities above, will be nonzero values
for training points “above” and “below” an ε-tube respectively. Because no
training data can be on both sides of the tube, either αi or α∗

i will be nonzero.
For data points inside the tube, both multipliers will be equal to zero. Thus
αiα

∗
i = 0.
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Note also that the constant C that influences a trade-off between an approx-
imation error and the weight vector norm ||w|| is a design parameter that is
chosen by the user. An increase in C penalizes larger errors i.e., it forces ξi and
ξ∗i to be small. This leads to an approximation error decrease which is achieved
only by increasing the weight vector norm ||w||. However, an increase in ||w||
increases the confidence term Ω and does not guarantee a small generalization
performance of a model. Another design parameter which is chosen by the
user is the required precision embodied in an ε value that defines the size of
an ε-tube. The choice of ε value is easier than the choice of C and it is given
as either maximally allowed or some given or desired percentage of the output
values yi (say, ε = 0.1 of the mean value of y).

Similar to procedures applied in the SV classifiers’ design, we solve the con-
strained optimization problem above by forming a primal variables Lagrangian

as follows,

Lp(w, b, ξi, ξ
∗
i , αi, α

∗
i , βi, β

∗
i ) =

=
1

2
wT w + C

l
∑

i=1

(

ξi + ξ∗i
)

−
l

∑

i=1

(

β∗
i ξ∗i + βiξi

)

−

−
l

∑

i=1

αi

[

wT xi + b− yi + ε + ξi

]

−

−
l

∑

i=1

α∗
i

[

wTxi + b− yi + ε + ξi

]

.

(46)

A primal variables Lagrangian Lp(w, b, ξi, ξ
∗
i , αi, α

∗
i , βi, β

∗
i ) has to be mini-

mized with respect to primal variables w, b, ξi and ξ∗i and maximized with
respect to nonnegative Lagrange multipliers αi, α∗

i , βi and β∗
i . Hence, the

function has the saddle point at the optimal solution (wo, bo, ξio, ξ∗io) to the
original problem. At the optimal solution the partial derivatives of Lp in re-
spect to primal variables vanishes. Namely,

∂Lp(wo, bo, ξio, ξ
∗
io, αi, α

∗
i , βi, β

∗
i )

∂w
= wo −

l
∑

i=1

(

αi − α∗
i

)

xi = 0, (47)

∂Lp(wo, bo, ξio, ξ
∗
io, αi, α

∗
i , βi, β

∗
i )

∂b
=

l
∑

i=1

(

αi − α∗
i

)

= 0, (48)
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∂Lp(wo, bo, ξio, ξ
∗
io, αi, α

∗
i , βi, β

∗
i )

∂ξi

= C − αi, βi = 0, (49)

∂Lp(wo, bo, ξio, ξ
∗
io, αi, α

∗
i , βi, β

∗
i )

∂ξ∗i
= C − α∗

i − β∗
i = 0, (50)

Substituting the KKT above into the primal Lp given in (46), we arrive at the
problem of the maximization of a dual variables Lagrangian Ld(α, α∗) below,

Ld(α, α∗) = −1

2

l
∑

i,j=1

(αi − α∗
i )(αj − α∗

j )x
T
i xj−

− ε

l
∑

i=1

(αi + α∗
i ) +

l
∑

i,j=1

(αi − α∗
i )yi =

= −1

2

l
∑

i,j=1

(αi − α∗
i )(αj − α∗

j )x
T
i xj−

−
l

∑

i=1

(ε− yi)αi −
l

∑

i=1

(ε + yi)α
∗
i

(51)

subject to constraints

l
∑

i=1

α∗
i =

l
∑

i=1

αi or
l

∑

i=1

(

αi − α∗
i

)

= 0, (52a)

0 6 αi 6 C, i = 1, l , (52b)

0 6 α∗
i 6 C, i = 1, l , (52c)

Note that the dual variables Lagrangian Ld(α, α∗) is expressed in terms of
Lagrange multipliers αi and α∗

i only. However, the size of the problem, with
respect to the size of an SV classifier design task, is doubled now. There are
2l unknown dual variables (l αi − s and l α∗

i − s) for a linear regression
and the Hessian matrix H of the quadratic optimization problem in the case of
regression is a (2l, 2l) matrix. The standard quadratic optimization problem

above can be expressed in a matrix notation and formulated as follows:

minimize Ld(α) = 0.5 αTHα + fT α, (53)
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subject to (52) where

α = [α1, α2, . . . , αl, α
∗
1, α

∗
2, . . . , α

∗
l ]

T ,

H =

[

G −G

−G G

]

,

G is an (l, l) matrix with entries Gij = [xT
i xj ] for a linear regression 8, and

f = [ε− y1, ε− y2, . . . , ε− yl, ε + y1, ε + y2, . . . , ε + yl]
T .

Again, (53) is written in a form of some standard optimization routine that
typically minimizes given objective function subject to same constraints (52).

The learning stage results in l Lagrange multiplier pairs (αi, α
∗
i ). After the

learning, the number of nonzero parameters αi or α∗
i is equal to the number

of SVs. However, this number does not depend on the dimensionality of input
space and this is particularly important when working in very high dimensional
spaces. Because at least one element of each pair (αi, α

∗
i ), i = 1, l, is zero,

the product of αi and α∗
i is always zero, i.e., αiα

∗
i = 0.

At the optimal solution the following KKT complementarity conditions must
be fulfilled

αi

(

wT xi + b − yi + ε + ξi

)

= 0, (54)

α∗
i

(

−wT xi − b + yi + ε + ξ∗i
)

= 0, (55)

βiξi = (C − αi)ξi = 0, (56)

β∗
i ξ∗i = (C − α∗

i )ξ
∗
i = 0, (57)

(56) states that for 0 < αi < C, ξi = 0 holds. Similarly, from (57) follows
that for 0 < α∗

i < C, ξ∗i = 0 and, for 0 < αi < C, α∗
i < C, from (54) and

(55) follows,
wTxi + b− yi + ε = 0, (58)

−wT xi − b + yi + ε = 0. (59)

Thus, for all the data points fulfilling y− f(x) = +ε, dual variables αi must be
between 0 and C, or 0 < αi < C, and for the ones satisfying y − f(x) = −ε,
α∗

i take on values 0 < α∗
i < C. These data points are called the free (or

8Note that Gij , as given above, is a badly conditioned matrix and we rather use Gij =
[xT

i xj + 1] instead.
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unbounded) support vectors. They allow computing the value of the bias term
b as given below

b = yi −wT xi − ε = 0, for 0 < αi < C, (60a)

b = yi −wTxi + ε = 0, for 0 < α∗
i < C. (60b)

The calculation of a bias term b is numerically very sensitive, and it is better to
compute the bias b by averaging over all the free support vector data points.

The final observation follows from (56) and (57) and it tells that for all the
data points outside the ε-tube, i.e., when both ξi > 0 and ξ∗i > 0, both αi and
α∗

i equal C, i.e., αi = C for the points above the tube and α∗
i = C for the

points below it. These data are the so-called bounded support vectors. Also, for
all the training data points within the tube, or when |y− f(x)| < ε, both αi and
α∗

i equal zero and they are neither the support vectors nor do they construct the
decision function f(x).

After calculation of Lagrange multipliers αi and α∗
i , using (47) we can find

an optimal (desired) weight vector of the regression hyperplane as

wo =

l
∑

i=1

(

αi − α∗
i

)

xi. (61)

The best regression hyperplane obtained is given by

f(x,w) = wT
o x + b =

l
∑

i=1

(

αi − α∗
i

)

xT
i x + b. (62)

More interesting, more common and the most challenging problem is to aim
at solving the nonlinear regression tasks. A generalization to nonlinear regres-
sion is performed in the same way the nonlinear classifier is developed from
the linear one, i.e., by carrying the mapping to the feature space, or by using
kernel functions instead of performing the complete mapping which is usually
of extremely high dimension (possibly even of an infinite dimension as it is the
case with a Gaussian kernel function). Thus, the nonlinear regression function
in an input space will be devised by considering a linear regression hyperplane
in the feature space.

We use the same basic idea in designing SV machines for creating a nonlin-

ear regression function. First, a mapping of input vectors x ∈ ℜn into vectors
Φ(x) of a higher dimensional feature space F (where Φ represents mapping:
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ℜn → ℜf ) takes place and then, we solve a linear regression problem in this
feature space. A mapping Φ(x) is again the chosen in advance, or fixed, func-
tion. Note that an input space (x-space) is spanned by components xi of an
input vector x and a feature space F (Φ-space) is spanned by components
φi(x) of a vector Φ(x). By performing such a mapping, we hope that in a
Φ-space, our learning algorithm will be able to perform a linear regression hy-
perplane by applying the linear regression SVM formulation presented above.
We also expect this approach to again lead to solving a quadratic optimization
problem with inequality constraints in the feature space. The (linear in a feature
space F ) solution for the regression hyperplane f = wT Φ(x) + b, will create a
nonlinear regressing hypersurface in the original input space. The most popular
kernel functions are polynomials and RBF with Gaussian kernels. Both kernels
are given in Table 2.

In the case of the nonlinear regression, the learning problem is again for-
mulated as the maximization of a dual Lagrangian (53) with the Hessian matrix
H structured in the same way as in a linear case, i.e. H = [G −G;−G G]
but with the changed Grammian matrix G that is now given as

G =







G11 · · · G1l

... Gii

...
Gl1 · · · Gll






(63)

where the entries Gij = ΦT (xi)Φ(xj) = K(xi,xj), i, j = 1, l.
After calculating Lagrange multiplier vectors α and α∗, we can find an

optimal weighting vector of the kernels expansion as

vo = α−α∗. (64)

Note however the difference in respect to the linear regression where the
expansion of a regression function is expressed by using the optimal weight
vector wo. Here, in a NL SVMs’ regression, the optimal weight vector wo

could be of infinite dimension (which is the case if the Gaussian kernel is
used). Consequently, we neither calculate wo nor we have to express it in a
closed form at all. Instead, we create the best nonlinear regression function by
using the weighting vector vo and the kernel (Grammian) matrix G as follows,

f(x,w) = Gvo + b. (65)

In fact, the last result follows from the very setting of the learning (optimizing)

stage in a feature space where, in all the equations above from (45) to (62),
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we replace xi by the corresponding feature vector Φ(xi). This leads to the
following changes:

• instead Gij = xT
i xj we get Gij = ΦT (xi)Φ(xj) and, by using the kernel

function K(xi,xj) = ΦT (xi)Φ(xj), it follows that Gij = K(xi,xj);
• similarly, (61) and (62) change as follows:

wo =

l
∑

i=1

(

αi − α∗
i

)

Φ(xi), (66)

and,

f(x,w) = wT
o Φ(x) + b =

l
∑

i=1

(

αi − α∗
i

)

ΦT (xi)Φ(x) + b =

=

l
∑

i=1

(α∗
i − αi)K(xix + b.

(67)

If the bias term b is explicitly used as in (65) then, for a NL SVMs’ regression,
it can be calculated from the upper SVs as,

b = yi −
∑N free upper SV s

j=1

(

αi − α∗
i

)

ΦT (xj)Φ(xi)− ε =

= yi −
∑N free upper SV s

j=1

(

αi − α∗
i

)

K(xi,xj)− ε,

for 0 < αi < C,

(68a)

or from the lower ones as,

b = yi −
∑N free lower SV s

j=1

(

αi − α∗
i

)

ΦT (xj)Φ(xi) + ε =

= yi −
∑N free lower SV s

j=1

(

αi − α∗
i

)

K(xi,xj) + ε,

for 0 < α∗
i < C,

(68b)

Note that α∗
j = 0 in (68a) and so is αj = 0 in (68b). Again, it is much better to

calculate the bias term b by an averaging over all the free support vector data
points.

There are a few learning parameters in constructing SV machines for regres-
sion. The three most relevant are the insensitivity zone ε, the penalty parameter
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C (that determines the trade-off between the training error and VC dimension
of the model), and the shape parameters of the kernel function (variances of a
Gaussian kernel, order of the polynomial, or the shape parameters of the inverse
multiquadrics kernel function). All three parameters’ sets should be selected by
the user. To this end, the most popular selection method is a cross-validation.
Unlike in a classification, for not too noisy data (primarily without huge out-
liers), the penalty parameter C could be set to infinity and the modeling can be
controlled by changing the insensitivity zone ε and shape parameters only.

The example below shows how an increase in an insensitivity zone ε has
smoothing effects on modeling highly noise polluted data. Increase in ε means
a reduction in requirements on the accuracy of an approximation. It decreases
the number of SVs leading to higher data compression too. This can be readily
followed in the lines and Fig. 17 below.

Example: Nonlinear regression by SVMs

The task here is to construct an SV machine for modeling measured data
pairs. The underlying function (known to us but, not to the SVM) is a sinus
function multiplied by the square one (i.e., f(x) = x2 sin x) and it is corrupted
by 25% of normally distributed noise with a zero mean. Analyze the influence
of an insensitivity zone ε on modeling quality and on a compression of data,
meaning on the number of SVs.

Fig. 17 shows that for a very noisy data a decrease of an insensitivity zone
ε (i.e., shrinking of the tube shown by dashed line) approximates the noisy
data points more closely. The related more and more wiggly shape of the
regression function can be achieved only by including more and more support
vectors. However, being good on the noisy training data points easily leads to an
overfitting. The cross-validation should help in finding correct ε value, resulting
in a regression function that filters the noise out but not the true dependency and
which, consequently, approximate the underlying function as close as possible.

The approximation functions shown in Fig. 17 are created by 9 and 18
weighted Gaussian basis functions for ε = 1 and ε = 0.75 respectively. These
supporting functions are not shown in the figure. However, the way how the
learning algorithm selects SVs is an interesting property of support vector ma-
chines and in Fig. 18 we also present the supporting Gaussian functions.

Note that the selected Gaussians lie in the dynamic area of the function in
Fig. 18. Here, these areas are close to both the left hand and the right hand
boundary. In the middle, the original function is pretty flat and there is no need
to cover this part by supporting Gaussians. The learning algorithm realizes this

УДК 001(06)+004.032.26 (06) Нейронные сети 149



ISBN 5–7262–0708–4 ЛЕКЦИИ ПО НЕЙРОИНФОРМАТИКЕ

-5

-4

-3

-2

-1

0

1

2

3

4

5

x

y

One-dimensional support vector regression
by Gaussian kernel functions
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Figure 17. The influence of an insensitivity zone ε on the model per-
formance. A nonlinear SVM creates a regression function f with Gaus-
sian kernels and models a highly polluted (25% noise) function x2sin(x)
(dotted). 31 training data points (plus signs) are used. Left: ε = 1; 9
SVs are chosen (encircled plus signs). Right: ε = 0.75; the 18 chosen SVs
produced a better approximation to noisy data and, consequently, there is
the tendency of overfitting.

fact and simply, it does not select any training data point in this area as a support
vector. Note also that the Gaussians are not weighted in Fig 18, and they all
have the peak value of 1. The standard deviation of Gaussians is chosen in
order to see Gaussian supporting functions better. Here, in Fig. 18, σ = 0.6.
Such a choice is due the fact that for the larger σ values the basis functions are
rather broad and flat above the domain shown. Thus, the supporting Gaussian
functions are covering the whole domain as the broad umbrellas. For very big
variances one wouldn’t be able to distinguish them visually.
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One-dimensional support vector regression by Gaussian functions 
The selected supporting Gaussian functions are also shown 

Figure 18. Regression function f created as the sum of 8 weighted
Gaussian kernels. A standard deviation of Gaussian bells σ = 0.6. Original
function (dashed line) is x2 sin x and it is corrupted by 0.25% noise. 31
training data points are shown as plus signs. Data points selected as
the SVs are encircled. The 8 selected supporting Gaussian functions are
centered at these data points.

Implementation Issues
In both the classification and the regression the learning problem boils down
to solving the QP problem subject to the so-called ‘box-constraints and to the
equality constraint in the case that a model with a bias term b is used. The SV
training works almost perfectly for not too large data basis. However, when the
number of data points is large (say l > 2, 000) the QP problem becomes ex-
tremely difficult to solve with standard QP solvers and methods. For example,
a classification training set of 50,000 examples amounts to a Hessian matrix H

with 2.5×109 (2.5 billion) elements. Using an 8-byte floating-point representa-
tion we need 20,000 Megabytes = 20 Gigabytes of memory (Osuna et al, 1997).
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This cannot be easily fit into memory of present standard computers, and this is
the single basic disadvantage of the SVM method. There are three approaches
that resolve the QP for large data sets. Vapnik in (Vapnik, 1995) proposed the
chunking method that is the decomposition approach. Another decomposition

approach is suggested in (Osuna et al, 1997). The sequential minimal optimiza-
tion (Platt, 1997) algorithm is of different character and it seems to be an “error
back propagation” for SVM learning. A systematic exposition of these various
techniques is not given here, as all three would require a lot of space. How-
ever, the interested reader can find a description and discussion about the novel
algorithms in (Kecman, Huang, and Vogt, 2005; Vogt and Kecman, 2005). The
Vogt and Kecman’s chapter discusses the application of an active set algorithm
in solving small to medium sized QP problems. For such data sets and when
the high precision is required the active set approach in solving QP problems
seems to be superior to other approaches (notably the interior point methods
and SMO algorithm). The Kecman, Huang, and Vogt’s chapter introduces the
efficient iterative single data algorithm (ISDA) for solving huge data sets (say
more than 100,000 or 500,000 or over 1 million training data pairs). It seems
that ISDA is the fastest algorithm at the moment for such large data sets (see
the comparisons with SMO in (Kecman, Huang and Vogt, 2005)) still ensuring
the convergence to the global minimum. This means that the ISDA provides
the exact, and not the approximate, solution to the original dual problem. In the
next section we will introduce the ISDA algorithm. As for now, let us conclude
the presentation of the classic SVMs part by summarizing the basic constructive
steps that lead to the SV machine.

A training and design of a support vector machine is an iterative algorithm
and it involves the following steps:

a) define your problem as the classification or as the regression one;
b) preprocess your input data: select the most relevant features, scale the

data between [−1, 1], or to the ones having zero mean and variances
equal to one, check for possible outliers (strange data points);

c) select the kernel function that determines the hypothesis space of the deci-
sion and regression function in the classification and regression problems
respectively;

d) select the “shape”, i.e., “smoothing” parameter of the kernel function
(for example, polynomial degree for polynomials and variances of the
Gaussian RBF kernels respectively);

e) choose the penalty factor C and, in the regression, select the desired
accuracy by defining the insensitivity zone ε too;
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f) solve the QP problem in l and 2l variables in the case of classification
and regression problems respectively;

g) validate the model obtained on some previously (i.e., during the training)
unseen test data, and if not pleased iterate between steps d (or, eventually
c) and g.

The optimizing part (f) is computationally extremely demanding. First, the
Hessian matrix H scales with the size of a data set — it is an (l, l) and an (2l, 2l)
matrix in classification and regression respectively. Second, unlike in classic
original QP problems H is very dense matrix and it is usually badly conditioned
requiring regularization before any numeric operation. Regularization means an
addition of a small number to the diagonal elements of H. Luckily, there are
many reliable and fast QP solvers. A simple internet search will reveal many
of them. Particularly, in addition to the classic ones such as MINOS or LOQO
for example, there are many more free QP solvers designed specially for the
SVMs. The most popular ones are — the LIBSVM, SVMlight, SVM Torch,
mySVM and SVM Fu. All of them can be downloaded from their corresponding
sites. Good educational software in MATLAB named LEARNSC, with very
good graphic presentations of all relevant objects in a SVM modeling, can be
downloaded from the author’s book site 9 too.

Finally we mention that there are many alternative formulations and ap-
proaches to the QP based SVMs described above. Notably, they are the linear
programming SVMs (Mangasarian, 1965; Friess and Harrison, 1998; Smola, et
al, 1998; Hadzic and Kecman, 1999; Graepel et al, 1999; Kecman and Hadzic,
2000; Kecman, 2001; Kecman, Arthanari, Hadzic, 2001), υ-SVMs (Schölkopf
and Smola, 2002) and least squares support vector machines (Suykens et al,
2002). Their description is far beyond this chapter and the curious readers are
referred to references given above.

Below we introduce a novel Iterative Single Data Algorithm (ISDA) for
resolving the problems coming from huge Hessian matrices in training SVMs.
First, we show the equality of various approaches in learning from data and
afterwards we present two variants of ISDA, namely one with the bias term b
and the other without it.

The lines below are the shortened versions of two papers presented at the
ESANN 2003 and 2004 which can be downloaded (together with few more
contributions of the author) from the author’s site 10.

9URL: www.support-vector.ws
10URL: http://www.support-vector.ws/html/publications.html

УДК 001(06)+004.032.26 (06) Нейронные сети 153



ISBN 5–7262–0708–4 ЛЕКЦИИ ПО НЕЙРОИНФОРМАТИКЕ

On the Equality of Kernel AdaTron and Sequential Minimal
Optimization and Alike Algorithms for Kernel Machines

This section presents the equality of a kernel AdaTron (KA) method (originat-
ing from a gradient ascent learning approach) and sequential minimal optimiza-
tion (SMO) learning algorithm (based on an analytic quadratic programming
step) in designing the support vector machines (SVMs) having positive defi-

nite kernels. The conditions of the equality of two methods are established.
The equality is valid for both the nonlinear classification and the nonlinear re-
gression tasks, and it sheds a new light to these seemingly different learning
approaches. The section also introduces other learning techniques related to the
two mentioned approaches, such as the nonnegative conjugate gradient, clas-
sic Gauss-Seidel (GS) coordinate ascent procedure and its derivative known as
the successive over-relaxation (SOR) algorithm as a viable and usually faster
training algorithms for performing nonlinear classification and regression tasks.
The convergence theorem for these related iterative algorithms is proven. Due
to restricted space, the presentation is scarce, giving only the final expressions.
More detailed derivations can be found in some papers and book chapter from
the site given at the end of the previous section above. In addition, the ISDA
software for solving huge SVMs’ learning problems can be downloaded from
appropriate site 11. The site is accompanying the Huang, Kecman and Kopriva’s
book which is in print at Springer Verlag.

Introduction

One of the mainstream research fields in learning from empirical data by sup-
port vector machines, and solving both the classification and the regression
problems, is an implementation of the incremental learning schemes when the
training data set is huge. Among several candidates that avoid the use of stan-
dard quadratic programming (QP) solvers, the two learning approaches which
have recently got the attention are the KA (Anlauf, Biehl, 1989; Friess, Cris-
tianini, Campbell, 1998; Veropoulos, 2001) and the SMO (Platt, 1998, 1999;
Vogt, 2002). Due to its analytical foundation the SMO approach is particularly
popular and at the moment the widest used, analyzed and still heavily develop-
ing algorithm. At the same time, the KA although providing similar results in
solving classification problems (in terms of both the accuracy and the training

11URL: www.learning-from-data.com
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computation time required) did not attract that many devotees. There are two
basic reasons for that. First, until recently (Veropoulos, 2001) the KA seemed to
be restricted to the classification problems only and second, it “lacked” the fleur
of the strong theory (despite its beautiful “simplicity” and strong convergence
proofs). The KA is based on a gradient ascent technique and this fact might
have also distracted some researchers being aware of problems with gradient
ascent approaches faced with possibly ill-conditioned kernel matrix.

Here we show when and why the recently developed algorithms for SMO
using positive definite kernels or models without a bias term (Vogt, 2002), and
the KA for both classification (Friess, Cristianini, Campbell, 1998) and regres-

sion (Veropoulos, 2001) are identical. Both the KA and the SMO algorithm
attempt to solve the QP problem in the case of classification by maximizing the
dual Lagrangian under the constraints as given in equations (37).

In the case of the nonlinear regression the learning problem is the maxi-
mization of a dual Lagrangian as given in equations (51) and (52). Note that
(51) is given for a linear regression hypersurface. For the nonlinear regres-
sion the scalar product xT

i xj must be replaced by the kernel function value
K(xi,xj).

The KA and SMO learning algorithms without-bias-term

It is known that positive definite kernels (such as the most popular and the most
widely used RBF Gaussian kernels as well as the complete polynomial ones)
do not require bias term (Evgeniou, Pontil, Poggio, 2000). Below, the KA and
the SMO algorithms will be presented for such a fixed (i.e., no-) bias design
problem and compared for the classification and regression cases. The equality
of two learning schemes and resulting models will be established. Originally, in
(Platt, 1998, 1999), the SMO classification algorithm was developed for solving
the problem (1) including the constraints related to the bias b. In these early
publications the case when bias b is fixed variable was also mentioned but the
detailed analysis of a fixed bias update was not accomplished.

Incremental Learning in Classification

(a) Kernel AdaTron in classification. The classic AdaTron algorithm
as given in (Anlauf and Biehl, 1989) is developed for linear classifier. The
KA is a variant of the classic AdaTron algorithm in the feature space of SVMs
(Friess et al., 1998). The KA algorithm solves the maximization of the dual
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Lagrangian (37) by implementing the gradient ascent algorithm. The update
∆αi of the dual variables αi is given as

∆αi = η
∂Ld

∂αi

= η
(

1− yi

l
∑

j=1

αjyjK(xi,xj)
)

= η
(

1− yifi

)

, (69a)

where fi is the value of the decision function f at the point xi, i.e.,

fi =

l
∑

j=1

αjyjK(xi,xj),

and yi denotes the value of the desired target (or the class’ label) which is either
+1 or −1. The update of the dual variables αi is given as

αi ← min(max(0, αi + ∆αi), C), (i = 1, . . . , l). (69b)

In other words, the dual variables αi are clipped to zero if (αi + ∆αi) < 0. In
the case of the soft nonlinear classifier (C <∞), αi are clipped between zero
and C, (0 6 αi 6 C). The algorithm converges from any initial setting for
the Lagrange multipliers αi.

(b) SMO without-bias-term in classification. Recently (Vogt, 2002)
derived the update rule for multipliers αi that includes a detailed analysis of
the Karush-Kuhn-Tucker (KKT) conditions for checking the optimality of the
solution 12. The following update rule for αi for a no-bias SMO algorithm was
proposed

∆αi = − yiEi

K(xi,xi)
= − yifi − 1

K(xi,xi)
=

1− yifi

K(xi,xi)
, (70)

where Ei = fi − yi denotes the difference between the value of the decision
function f at the point xi and the desired target (label) yi. Note the equality of
(69a) and (70) when the learning rate in (69a) is chosen to be ηi = 1/K(xi,xi).
The important part of the SMO algorithm is to check the KKT conditions with
precision τ (e.g., τ = 10−3) in each step. An update is performed only if

αi < C ∧ yiEi < −τ, or

αi > 0 ∧ yiEi > τ.
(70a)

12As referred above, a fixed bias update was only mentioned in Platt’s papers.
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After an update, the same clipping operation as in (69b) is performed

αi ← min(max(0, αi + ∆αi), C), (i = 1, . . . , l). (70b)

It is the nonlinear clipping operation in (69b) and in (70b) that strictly
equals the KA and the SMO without-bias-term algorithm in solving nonlinear
classification problems. This fact sheds new light on both algorithms. This
equality is not that obvious in the case of a “classic” SMO algorithm with
bias term due to the heuristics involved in the selection of active points which
should ensure the largest increase of the dual Lagrangian Ld during the iterative
optimization steps.

Incremental Learning in Regression. Similarly to the case of classifica-
tion, there is a strict equality between the KA and the SMO algorithm when
positive definite kernels are used for nonlinear regression.

(a) Kernel AdaTron in regression. The first extension of the Kernel
AdaTron algorithm for regression is presented in (Veropoulos, 2001) as the
following gradient ascent update rules for αi and α∗

i

∆αi = ηi

∂Ld

∂αi

= ηi

(

yi − ε−
l

∑

j=1

(

αj − α∗
j

)

K(xj ,xi)
)

=

= ηi

(

yi − ε− fi

)

= −ηi

(

Ei + ε
)

,

(71a)

∆α∗
i = ηi

∂Ld

∂α∗
i

= ηi

(

−yi − ε +

l
∑

j=1

(

αj − α∗
j

)

K(xj ,xi)
)

=

= ηi

(

yi − ε + fi

)

= ηi

(

Ei − ε
)

,

(71b)

where yi is the measured value for the input xi, ε is the prescribed insensitivity
zone, and Ei = fi−yi stands for the difference (an error) between the regression
function f at the point xi and the desired target value yi at this point. The
calculation of the gradient above does not take into account the geometric reality
that no training data can be on both sides of the tube. In other words, it does
not use the fact that either αi or α∗

i or both will be nonzero, i.e., that αiα
∗
i = 0

must be fulfilled in each iteration step. Below we derive the gradients of the
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dual Lagrangian Ld accounting for geometry. This new formulation of the KA
algorithm strictly equals the SMO method and it is given as

∂Ld

∂α∗
i

= −K(xi,xi)αi −
l

∑

j=1,j 6=i

(

αj − α∗
j

)

K(xj ,xi) + yi − ε+

+ K(xi,xi)αi −K(xi,xi)α∗
i =

= K(xi,xi)α∗
i −

(

αi − α∗
i

)

K(xi,xi)−

−
l

∑

j=1,j 6=i

(

αj − α∗
j

)

K(xj ,xi) + yi − ε =

= −K(xi,xi)α∗
i + yi − ε− fi = −

(

K(xi,xi)α∗
i + Ei + ε

)

.

(72a)

For the α∗
i multipliers, the value of the gradient is

∂Ld

∂α∗
i

= −K(xi,xi)αi + Ei − ε. (72b)

The update value for αi is now

∆αi = ηi

∂Ld

∂αi

= −ηi

(

K(xi,xi)α∗
i + Ei + ε

)

, (73a)

αi ← αi + ∆αi = αi + ηi

∂Ld

∂αi

= αi − ηi

(

K(xi,xi)α∗
i + Ei + ε

)

. (73b)

For the learning rate ηi = 1/K(xi,xi) the gradient ascent learning KA is
defined as,

αi ← αi − α∗
i −

Ei + ε

K(xi,xi)
, (74a)

Similarly, the update rule for α∗
i is

α∗
i ← α∗

i − αi +
Ei − ε

K(xi,xi)
. (74b)

Same as in the classification, αi and α∗
i are clipped between zero and C,

αi ← min(max(0, αi), C), i = 1, . . . , l, (75a)

α∗
i ← min(max(0, α∗

i ), C), i = 1, . . . , l. (75b)
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(b) SMO without-bias-term in regression. The first algorithm for the
SMO without-bias-term in regression (together with a detailed analysis of the
KKT conditions for checking the optimality of the solution) is derived in (Vogt,
2002). The following learning rules for the Lagrange multipliers αi and α∗

i

updates were proposed

αi ← αi − α∗
i −

Ei + ε

K(xi,xi)
, (76a)

α∗
i ← α∗

i − αi +
Ei − ε

K(xi,xi)
. (76b)

The equality of equations (74a, b) and (76a, b) is obvious when the learning
rate, as presented above in (74a, b), is chosen to be ηi = 1/K(xi,xi). Thus,
in both the classification and the regression, the optimal learning rate is not
necessarily equal for all training data pairs. For a Gaussian kernel, η = 1 is
same for all data points, and for a complete nth order polynomial each data
point has different learning rate ηi = 1/(xT

i xi +1)n. Similar to classification, a
joint update of αi and α∗

i is performed only if the KKT conditions are violated
by at least τ , i.e. if

αi < C ∧ ε + Ei < −τ, or

αi > 0 ∧ ε + Ei > τ, or

α∗
i < C ∧ ε− Ei < −τ, or

α∗
i > 0 ∧ ε− Ei > τ.

(77)

After the changes, the same clipping operations as defined in (11) are performed

αi ← min(max(0, αi), C), i = 1, . . . , l, (78a)

α∗
i ← min(max(0, α∗

i ), C), i = 1, . . . , l. (78b)

The KA learning as formulated in this section and the SMO algorithm without-
bias-term for solving regression tasks are strictly equal in terms of both the
number of iterations required and the final values of the Lagrange multipliers.
The equality is strict despite the fact that the implementation is slightly different.
In every iteration step, namely, the KA algorithm updates both weights αi and
α∗

i without any checking whether the KKT conditions are fulfilled or not, while
the SMO performs an update according to equations (77).
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The Coordinate Ascent Based Learning for Nonlinear Classification and
Regression Tasks — The Gauss-Seidel Algorithm

When positive definite kernels are used, the learning problem for both tasks is
same. In a vector-matrix notation, in a dual space, the learning is defined as:

maximize

Ld(α) = −0.5αTKα + fT α, (79)

such that

0 6 αi 6 C, (i = 1, . . . , n), (80)

where, in the classification n = l and the matrix K is an (l, l) symmetric pos-
itive definite matrix, while in regression n = 2l and K is a (2l, 2l) symmetric
semi-positive definite one. Note that the constraints (80) define a convex sub-
space over which the convex dual Lagrangian should be maximized. It is very
well known that the vector α may be looked at as the solution of a system of
linear equations

Kα = f (81)

subject to the same constraints as given by (80).
Thus, it may seem natural to solve (81), subject to (80), by applying some of

the well known and established techniques for solving a general linear system
of equations. The size of training data set and the constraints (80) eliminate
direct techniques. Hence, one has to resort to the iterative approaches in solv-
ing the problems above. There are three possible iterative avenues that can be
followed. They are; the use of the Non-Negative Least Squares (NNLS) tech-
nique (Lawson and Hanson, 1974), application of the Non-Negative Conjugate
Gradient (NNCG) method (Hestenes, 1980) and the implementation of Gauss-
Seidel (GS) i.e., the related Successive Over-Relaxation technique (SOR). The
first two methods, in their “classic” appearance, solve for the non-negative con-
straints only. Thus, they are not suitable in solving “soft” tasks, when penalty
parameter C <∞ is used, i.e., when there is an upper bound on maximal value
of αi. In the case of nonlinear regression, one can apply NNLS and NNCG
by taking C = ∞ and compensating (i.e. smoothing or “softening” the solu-
tion) by increasing the sensitivity zone ε. The two methods (namely NNLS
and NNCG) are not suitable for solving soft margin (C < ∞) classification
problems in their present form, because there is no other parameter that can be
used in “softening” the margin. Recently, the NNCG algorithm for solving (81)
with box-constraints (80) is developed and presented in (Huang, Kecman and
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Kopriva, 2006). However, due to the usually bad conditioned Hessian matrix
K, NNCG will not be used in the lines below.

Here we show how to extend the application of GS and SOR to both the
nonlinear classification and to the nonlinear regression tasks. The Gauss-Seidel
method solves (81) by using the ith equation to update the ith unknown doing
it iteratively, i.e., starting in the kth step with the first equation to compute the
αk+1

1 , then the second equation is used to calculate the αk+1
2 by using new

αk+1
1 and αk

i (i > 2) and so on. The iterative learning takes the following
form,

αk+1
i =

(

fi −
i−1
∑

j=1

Kijα
k+1
j −

n
∑

j=i+1

Kijα
k
j

)

/Kii =

= αk
i −

1

Kii

(

i−1
∑

j=1

Kijα
k+1
j +

n
∑

j=i

Kijα
k
j − fi

)

=

= αk
i +

1

Kii

∂Ld

∂αi

∣

∣

∣

∣

k+1

,

(82)

where we use the fact that the term within a second bracket (called the residual
ri in mathematics’ references) is the ith element of the gradient of a dual
Lagrangian Ld given in (79) at the (k + 1)th iteration step. The equation (82)
above shows that GS method is a coordinate gradient ascent procedure as the
KA and the SMO are. The KA and SMO for positive definite kernels equal the

GS! Note that the optimal learning rate used in both the KA algorithm and in
the SMO without-bias-term approach is exactly equal to the coefficient 1/Kii

in a GS method. Based on this equality, the convergence theorem for the KA,
SMO and GS (i.e., SOR) in solving (81) subject to constraints (80) can be stated
and proved as follows:

Theorem: For SVMs with positive definite kernels (while using them with-
out the bias term b) the iterative learning algorithms KA i.e., SMO i.e., GS
i.e., SOR, in solving nonlinear classification and regression tasks (81) subject
to constraints (80), converge starting from any initial choice of α0.

Proof: The proof is based on the very well known theorem of convergence
of the GS method for symmetric positive definite matrices in solving (81) with-
out constraints (Ostrowski, 1966). First note that for positive definite kernels,
the matrix K created by terms yiyjK(xi,xj) in the second sum in (1), and in-
volved in solving classification problem, is also positive definite. In regression
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tasks K is a symmetric positive semi-definite (meaning still convex) matrix,
which after a mild regularization given as (K ← K + λI, λ ∼ 1e − 12) be-
comes positive definite one. (Note that the proof in the case of regression does
not need regularization at all, but there is no space here to go into these details).
Hence, the learning without constraints (80) converges, starting from any initial
point α0, and each point in an n-dimensional search space for multipliers αi

is a viable starting point ensuring a convergence of the algorithm to the maxi-
mum of a dual Lagrangian Ld. This, naturally, includes all the (starting) points
within, or on a boundary of, any convex subspace of a search space ensuring
the convergence of the algorithm to the maximum of a dual Lagrangian Ld over
the given subspace. The constraints imposed by (80) preventing variables αi to
be negative or bigger than C, and implemented by the clipping operators above,
define such a convex subspace. Thus, each “clipped” multiplier value αi de-
fines a new starting point of the algorithm guaranteeing the convergence to the
maximum of Ld over the subspace defined by (80). For a convex constraining
subspace such a constrained maximum is unique. Q.E.D.

Due to the lack of the space we do not go into the discussion on the con-
vergence rate here and we leave it to some other occasion. It should be only
mentioned that both KA and SMO (i.e. GS and SOR) for positive definite ker-
nels have been successfully applied for many problems (see references given
here, as well as many other, benchmarking the mentioned methods on various
data sets). Finally, let us just mention that the standard extension of the GS
method is the method of successive over-relaxation that can reduce the number
of iterations required by proper choice of relaxation parameter ω significantly.
The SOR method uses the following updating rule

αk+1
i = αk

i − ω
1

Kii

(

i−1
∑

j=1

Kijα
k+1
j +

n
∑

j=i

Kijα
k
j − fi

)

=

= αk
i + ω

1

Kii

∂Ld

∂αi

∣

∣

∣

∣

k+1

,

(83)

and similarly to the KA, SMO, and GS its convergence is guaranteed for 0 <
ω < 2.
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SVMs with a Bias Term b

Now, we discuss and present the use and calculation of the explicit bias term b
in the support vector machines within the Iterative Single training Data learning
Algorithm. The approach with a bias b can also be used for both nonlinear
classification and nonlinear regression tasks. It is well known that for positive
definite kernels there is no need for bias b (Kecman, 2001). We used this fact
while developing ISDA in previous section. However, one can use the bias term
b and this means implementing a different kernel. There is a report and a paper
where this issue has been discussed. In (Poggio et al., 2001)

f(x) =

l
∑

j=1

wjK(x,xj) + b

and it was shown that f(x) is a function resulting from a minimization of the
functional shown below

I[f ] =

l
∑

j=1

V (yj , f(xj)) + λ
∣

∣

∣

∣f
∣

∣

∣

∣

2

K∗
, (84)

where K∗ = K − a (for an appropriate constant a) and K is an original kernel
function (more details can be found in the mentioned report). This means that
by adding a constant term to a positive definite kernel function K , one obtains
the solution to the functional I[f ] where K∗ is a conditionally positive definite
kernel. Interestingly, similar type of model was also presented in (Mangasarian
and Musicant, 1999). However, their formulation is done for the classification
problems only. They reformulated the optimization by adding the b2/2 term
to the cost function ||w||2/2. This is equivalent to an addition of 1 to the
original kernel matrix K. As a result, they changed the original classification
dual problem to the optimization of the following one

Ld(α) =
l

∑

i=1

αi −
1

2

l
∑

i,j=1

αiαjyiyj(K(xi,xj) + 1). (85)

Iterative Single Data Algorithm for SVMs with Bias

In section “On the Equality of Kernel AdaTron and Sequential Minimal Opti-
mization and Alike Algorithms for Kernel Machines” and for the SVMs models
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when positive definite kernels are used without a bias term b, the learning al-
gorithms for classification and regression (in a dual domain) were solved with
box constraints only, originating from minimization of a primal Lagrangian in
respect to the weights wi. However, there remains an open question — how to
apply the proposed ISDA for the SVMs that do use explicit bias term b. Such
general nonlinear SVMs in classification and regression tasks are given below,

f(xi) =

l
∑

j=1

yjαjΦ(xi)
T Φ(xj) + b =

l
∑

j=1

wjK(xi,xj) + b, (86a)

f(xi) =
l

∑

j=1

(α∗
j − αj)Φ(xi)

T Φ(xj) + b =
l

∑

j=1

wjK(xi,xj) + b, (86b)

where Φ(xi) is the m-dimensional vector that maps n-dimensional input vec-
tor x into the feature space 13. For each SVMs’ model in (86), there is also
one equality constraint originating from a minimization of the primal objective
function in respect to the bias b as given below,

l
∑

i=1

αiyi = 0, (87a)

in a classification, and
l

∑

i=1

α∗
i =

l
∑

i=1

αi (87b)

in a regression.
The motivation for developing the ISDA for the SVMs with an explicit bias

term b originates from the fact that the use of an explicit bias term b seems to

lead to the SVMs with less support vectors. This fact can often be very useful
for both the data (information) compression and the speed of learning. Below,
we present an iterative learning algorithm for the classification SVMs (86a) with
an explicit bias b, subjected to the equality constraint (87a) 14. The problem to

13Note that for a classification model in (86a), we usually take the sign of f(x) but this
is of lesser importance now.

14The same procedure is developed for the regression SVMs but due to the space con-
straints we do not go into these details here. However we give some relevant hints for the
regression SVMs with bias b.
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solve is,

min
1

2
wTw (88a)

such that
yi[w

T Φ(xi) + b] > 1, i = 1, . . . , l , (88b)

which can be transformed into its dual form by minimizing the primal La-
grangian

Lp(w, b, α) =
1

2
wT w −

l
∑

i=1

αi

{

yi

[

wT Φ(xi) + b
]

− 1
}

(89)

in respect to w and b by using ∂Lp/∂wo = 0 and ∂Lp/∂b = 0, i.e. by
exploiting

w =

l
∑

i=1

αiyiΦ(xi) and
l

∑

i=1

αiyi = 0. (90)

The standard change to a dual problem is to substitute w from (90) into the
primal Lagrangian and this leads to a dual Lagrangian problem below,

Ld(α) =
l

∑

i=1

αi −
1

2

l
∑

i,j=1

yiyjαiαjK(xi,xj)−
l

∑

i=1

αiyib (91)

subject to the box constraints (92) and, in a standard SVMs formulation, also to
the equality constraint (93) as given below

αi > 0, i = 1, . . . , l (92)

and
l

∑

i=1

αiyi = 0 . (93)

There are three major avenues (procedures, algorithms) possible in solving the
dual problem (91), (92) and (93).

The first one is the standard SVMs algorithm which imposes the equality
constraint (93) during the optimization and in this way ensures that the solution
never leaves a feasible region. In this case the last term in (91) vanishes. (Note
that in a standard SMO iterative scheme for training SVMs the minimal number
of training data points enforcing (93) and ensuring staying in a feasible region
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is two). After the dual problem is solved, the bias term is calculated by using
unbounded Lagrange multipliers αi (Kecman, 2001; Schölkopf, Smola, 2002)
as follows

b =
1

#UnboundSV ecs

(

∑#UnboundSV ecs

i=1

(

yi −wT Φ(xi)
)

)

. (94)

Below, we show two more possible ways how the ISDA works for the SVMs
containing an explicit bias term too. In the second method, the cost function
(88a) is augmented with the term 0.5kb2 (where k > 0). Note that this step is
related to solving the dual problem by penalty method where a decrease in k
leads to the stronger imposing of an equality constraint (see comments below).
After forming the primal Lagrangian as well as using

w =

l
∑

i=1

αiyiΦ(xi) and b =
1

k

l
∑

i=1

αiyi

(coming from ∂Lp/∂wo = 0 and ∂Lp/∂b = 0) one arrives at the dual problem
not containing the explicit bias term b. Actually, the optimization of a dual
Lagrangian is reformulated for the SVMs with a bias term b by applying “tiny”
change only to the original matrix K. For the nonlinear classification problems
ISDA stands for an iterative solving of the following linear system

Kk α = 1l (95a)

such that
0 6 αi 6 C, i = 1, . . . , l , (95b)

where

Kk(xi,xj) = yiyj

(

K(xi,xj) +
1

k

)

,

1l is an l-dimensional unity vector and C is a penalty factor equal to infinity
for a hard margin classifier. Note that during the updates of αi, the bias term
b must not be used because it is implicitly incorporated within the Kk matrix.
Only after the solution vector α in (95) is found, the bias b should be calculated
either by using unbounded Lagrange multipliers αi as given in (94), or by
implementing the equality constraint from ∂Lp/∂b = 0 and given as

b =
1

k

∑#SV ecs

j=1
αiyi. (96)

166 УДК 001(06)+004.032.26 (06) Нейронные сети



В.КЕЦМАН

Note, however, that all the Lagrange multipliers, meaning both bounded (clipped
to C) and unbounded (smaller than C) must be used in (96). Both equations,
(94) and (96), result in the same value for the bias b. Thus, using the SVMs with
an explicit bias term means that in the ISDA proposed above original kernel is
changed, i.e., another kernel function is used. This means that the alpha values
will be different for each k chosen, and so will be the value for b. However, the
final SVM as given in (86) is produced by original kernels. Namely, f(x) is ob-
tained by adding the sum of weighted original kernel values and corresponding
bias term b.

The second method presented above and aimed at an extending of the ISDA
to the SVMs with a bias term b is related to the classic (quadratic) penalty
methods for solving optimization problems with an equality constraint. Namely,
the addition of 0.5kb2 to (88a) changes the last term of (91) to

1

2k

∣

∣

∣

∣

∣

∣

l
∑

i=1

αiyi

∣

∣

∣

∣

∣

∣

2

2

which is equivalent to applying a penalty parameter of 1/k to the L2 norm of
the equality constraint (93). As a result, for a large value of 1/k, the solution
will have a small L2 norm of (93). In other words, as k approaches zero a
bias b converges to the solution of the standard QP method that enforces the
equality constraint. However, we do not use the ISDA with small parameter
k values here, because the condition number of the matrix Kk increases as
1/k rises. Furthermore, the strict fulfilment of (93) may not be needed in
obtaining a good SVM. Here, in classifying the MNIST data with Gaussian
kernels, the value k = 10 proved to be a very good one justifying all the
reasons for its introduction (fast learning, small number of support vectors and
good generalization).

The third method in implementing the ISDA for SVMs with the bias term
b is to work with original cost function (88a) and keep imposing the equality
constraint during the iterations as suggested in (Veropoulos, 2001). The learning
starts with b = 0 and after each epoch the bias b is updated by applying a secant
method as follows

bk = bk−1 − ωk−1 bk−1 − bk−2

ωk−1 − ωk−2
(97)

where ω =
∑l

i=1 αiyi represents the value of an equality constraint after each
epoch. In the case of the regression SVMs, equation (97) is used by implement-
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ing the corresponding regression’s equality constraint, namely
∑l

i=1(αi − α∗
i ).

This is different from (Veropoulos, 2001) where an iterative update after each
data pair is proposed. In our SVMs regression experiments such an updating
led to an unstable learning. Also, in an addition to changing expression for
ω, both the K matrix, which is now (2l, 2l) matrix, and the right hand side of
(95a) which becomes (2l, 1) vector, should be changed too and formed as given
in (Kecman, Vogt, Huang, 2003).

Performance of an ISD Learning Algorithm and Comparisons

To measure the relative performance of different ISDAs, we ran all the algo-
rithms with RBF Gaussian kernels on a MNIST dataset with 576-dimensional
inputs (Dong et al, 2003), and compared the performance of our ISD algorithm
with LIBSVM V2.4 (Chang et al, 2003) which is one of the fastest and the most
popular SVM solvers at the moment based on the SMO type of an algorithm.
The MNIST dataset consists of 60,000 training and 10,000 test data pairs. To
make sure that the comparison is based purely on the nature of the algorithm
rather than on the differences in implementation, our encoding of the algorithms
are the same as LIBSVM’s one in terms of caching strategy (LRU–Least Re-
cent Used), data structure, heuristics for shrinking and stopping criterions. The
only significant difference is that instead of two heuristic rules for selecting and
updating two data points at each iteration step aiming at the maximal improve-
ment of the dual objective function, our ISDA selects the worse KKT violator
only and updates its αi at each step.

Also, in order to speed up the LIBSVM’s training process, we modified the
original LIBSVM routine to perform faster by reducing the numbers of complete
KKT checking without any deterioration of accuracy. All the routines were
written and compiled in Visual C++ 6.0, and all simulations were run on a 2.4
GHz P4 processor PC with 1.5 Gigabyte of memory under the operating system
Windows XP Professional. The shape parameter σ2 of an RBF Gaussian kernel
and the penalty factor C are set to be 0.3 and 10 (Dong J.X. et al, 2003). The
stopping criterion τ and the size of the cache used are 0.01 and 250 Megabytes.
The simulation results of different ISDA against both LIBSVM are presented in
Tables 3 and 4, and in a Fig. 19. The first and the second column of the tables
show the performance of the original and modified LIBSVM respectively. The
last three columns show the results for single data point learning algorithms
with various values of constant 1/k added to the kernel matrix in (95a). For
k = ∞, ISDA is equivalent to the SVMs without bias term, and for k = 1,
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Table 3. Simulation time for different algorithms

LIBSVM 
original

LIBSVM 
modified 

Iterative single data algorithm (ISDA) 
        k = 1 k = 10 k =

Class Time(sec) Time(sec) Time(sec) Time(sec) Time(sec) 

0 1606 885 800 794 1004

1 740 465 490 491 855

2 2377 1311 1398 1181 1296

3 2321 1307 1318 1160 1513

4 1997 1125 1206 1028 1235

5 2311 1289 1295 1143 1328

6 1474 818 808 754 1045

7 2027 1156 2137 1026 1250

8 2591 1499 1631 1321 1764

9 2255 1266 1410 1185 1651

Time In-
crease

+95.3% +10.3% +23.9% 0 +28.3% 

Table 4. Number of support vectors for each algorithm

LIBSVM 
original

LIBSVM 
modified 

Iterative single data algorithm (ISDA) 
k = 1 k = 10 k = 

Class # SV (BSV) # SV (BSV) # SV (BSV) # SV (BSV) # SV (BSV) 

0 2172 (0) 2172 (0) 2162 (0) 2132 (0) 2682  (0) 

1 1440 (4) 1440 (4) 1429 (4) 1453 (4) 2373 (4)

2 3055 (0) 3055 (0) 3047 (0) 3017 (0) 3327 (0)

3 2902 (0) 2902 (0) 2888 (0) 2897 (0) 3723 (0)

4 2641 (0) 2641 (0) 2623 (0) 2601 (0) 3096 (0)

5 2900 (0) 2900 (0) 2884 (0) 2856 (0) 3275 (0)

6 2055 (0) 2055 (0) 2042 (0) 2037 (0) 2761 (0)

7 2651 (4) 2651 (4) 3315 (4) 2609 (4) 3139 (4)

8 3222 (0) 3222 (0) 3267 (0) 3226 (0) 4224 (0)

9 2702 (2) 2702 (2) 2733 (2) 2756 (2) 3914 (2)

Average 
# of SV 

2574 2574 2639 2558 3151

BSV = Bounded SVs 
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Figure 19. The percentage of errors on the test data

it is the same as the classification formulation proposed in (Mangasarian and
Musicant, 1999).

Table 3 illustrates the running time for each algorithm. The ISDA with k =
10 was the quickest and required the shortest average time (T10) to complete
the training. The average time needed for the original LIBSVM is almost 2T10

and the average time for a modified version of LIBSVM is 10.3% bigger than
T10. This is contributed mostly to the simplicity of the ISD algorithm. One may
think that the improvement achieved is minor, but it is important to consider
the fact that approximately more than 50% of the CPU time is spent on the
final checking of the KKT conditions in all simulations. During the checking,
the algorithm must calculate the output of the model at each datum in order
to evaluate the KKT violations. This process is unavoidable if one wants to
ensure the solution’s global convergence, i.e. that all the data do satisfy the
KKT conditions with precision τ indeed. Therefore, the reduction of time spent
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on iterations is approximately double the figures shown. Note that the ISDA
slows down for k < 10 here. This is a consequence of the fact that with a
decrease in k there is an increase of the condition number of a matrix Kk,
which leads to more iterations in solving (95). At the same time, implementing
the no-bias SVMs, i.e., working with k =∞, also slows the learning down due
to an increase in the number of support vectors needed when working without
bias b.

Table 4 presents the numbers of support vectors selected. For the ISDAs,
the numbers reduce significantly when the explicit bias term b is included. One
can compare the numbers of SVs for the case without the bias b (k = ∞)
and the ones when an explicit bias b is used (cases with k = 1 and k = 10).
Because identifying less support vectors speeds the overall training definitely
up, the SVMs implementations with an explicit bias b are faster than the version
without bias.

In terms of a generalization, or a performance on a test data set, all the
algorithms had very similar results and this demonstrates that the ISDAs pro-
duce models that are as good as the standard QP, i.e., SMO based, algorithms.
The percentages of the errors on the test data are shown in Fig. 19. Notice the
extremely low error percentages on the test data sets for all numerals.

Conclusions

The seminar presents the basics of the standard SVMs models for solving the
classification and regression problems first. Then, it also shows why and how,
when positive definite kernels are used, the kernel AdaTron, sequential minimal
optimization and Gauss-Seidel (i.e., successive over relaxation) algorithms are
identical in their analytic form and numerical implementation. Till now, these
facts were blurred mainly due to different pace in posing the learning problems
and due to the “heavy” heuristics involved in an SMO implementation that
shadowed an insight into the possible identity of the methods. It is shown that
in the so-called no-bias SVMs, both the KA and the SMO procedure are the
coordinate ascent based methods. Based on these equalities the novel ISDA
for training SVMs is devised. Finally, due to the many ways how all the three
algorithms (KA, SMO and GS i.e., SOR) can be implemented there may be
some differences in their overall behavior. The introduction of the relaxation
parameter 0 < ω < 2 will speed up the algorithm. The exact optimal value
ωopt is problem dependent.
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Next, we demonstrate the use, the calculation and the effect of incorporat-
ing an explicit bias term b in the SVMs trained with the ISDA. The simulation
results show that models generated by ISDAs (either with or without the bias
term b) are as good as the standard QP (i.e., SMO) based algorithms in terms
of a generalization performance. Moreover, ISDAs with an appropriate k value
are faster than the standard SMO algorithms on large scale classification prob-
lems (k = 10 worked particularly well in all our simulations using Gaussian
RBF kernels, however it may be that the “best” k value is problem dependent).
This is due to both the simplicity of ISDAs and the decrease in the number of
SVs chosen after an inclusion of an explicit bias b in the model. The simplicity
of ISDAs is the consequence of the fact that the equality constraints (87) do
not need to be fulfilled during the training stage. In this way, the second order

heuristics is avoided during the iterations. Thus, the ISDA is an extremely good
tool for solving large scale SVMs problems containing huge training data sets
because it is faster than, and it delivers ‘same’ generalization results as, the
other standard QP (SMO) based algorithms. The fact that an introduction of an
explicit bias bmeans solving the problem with different kernel suggests that it
may be hard to tell in advance for what kind of previously unknown multivari-
able decision (regression) function the models with bias b may perform better,
or may be more suitable, than the ones without it. As it is often the case, the real
experimental results, their comparisons and the new theoretical developments
should probably be able to tell one day. As for the single data based learning
approach presented here, the future work will focus on the development of even
faster training algorithms.
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